Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 328: 121609, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37044255

ABSTRACT

Transect sampling is an under-exploited tool in isotope studies of atmospheric pollution. Few studies have combined Zn and Pb isotope ratios to investigate whether atmospheric pollution at a receptor site is dominated by a different anthropogenic source of each of these toxic elements. It has been also unclear whether pollution abatement strategies in Central Europe have already resulted in regionally well-mixed background isotope signature of atmospheric Zn and Pb. Zinc and lead isotope ratios were determined in snow collected along a rural transect downwind from the Upper Silesian industrial area (southern Poland). Spatial and temporal gradients in δ66Zn and 206Pb/207Pb ratios at four sites were compared with those of ore and coal collected in eight Czech and Polish mining districts situated at distances of up to 500 km. Snow pollution was extremely high 8 km from Olkusz in 2011 (1670 µg Zn L-1; 240 µg Pb L-1), sharply decreased between 2011 and 2018, and remained low in 2019-2021. Snow pollution was lower at sites situated 28-68 km from Olkusz. Across study sites, mean δ66Zn and 206Pb/207Pb ratios of snow were -0.13‰ and 1.155, respectively. With an increasing distance from Olkusz, the δ66Zn values first increased and then decreased, while the 206Pb/207Pb ratios first decreased and then increased. The δ66Zn values in snow plotted closer to those of Upper Silesian ores (-0.20‰) than to the δ66Zn values of Upper Silesian stone coal (0.52‰), showing predominance of smelter-derived over power-plant derived Zn pollution. The 206Pb/207Pb ratios of Upper Silesian coal (1.171) and Upper Silesian ores (1.180) were higher compared to those of snow. A206Pb/207Pb vs.208Pb/207Pb plot identified legacy pollution from leaded gasoline as the low-radiogenic mixing end-member. Across the transect sites, only the last sampling campaign exhibited a high degree of isotope homogenization for both Zn and Pb.


Subject(s)
Environmental Pollution , Lead , Zinc/analysis , Isotopes/analysis , Coal , Environmental Monitoring/methods
2.
Sci Rep ; 9(1): 4570, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30872681

ABSTRACT

Molybdenum (Mo) and its isotopes have been used to retrieve palaeoenvironmental information on the ocean-atmosphere system through geological time. Their application has so far been restricted to rocks least affected by severe metamorphism and deformation, which may erase or alter palaeoenvironmental signals. Environmental Mo-isotope signatures can be retrieved if the more manganese (Mn)-enriched rocks are isotopically depleted and the maximum range of δ98Mo values is close to the ~2.7‰ Mo-isotope fractionation known from Mo sorption onto Mn oxides at low temperature. Here, we show that the Morro da Mina Mn-ore deposit in Minas Gerais, Brazil, contains Mn-silicate-carbonate ore and associated graphitic schist that likely preserve δ98Mo of Palaeoproterozoic seawater, despite a metamorphic overprint of at least 600 °C. The extent of Mo-isotope fractionation between the Mn-silicate-carbonate ore and the graphitic schist is similar to modern Mn-oxide precipitates and seawater. Differences in δ98Mo signals are broadly reflected in cerium (Ce) anomalies, which suggest an oxic-anoxic-stratified Palaeoproterozoic ocean.

3.
Environ Pollut ; 218: 1135-1146, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27613315

ABSTRACT

Copper (Cu) and zinc (Zn) isotope ratios can be used to fingerprint sources and dispersion pathways of pollutants in the environment. Little is known, however, about the potential of δ65Cu and δ66Zn values in liquid and solid forms of atmospheric deposition to distinguish between geogenic, industrial, local and remote sources of these potentially toxic base metals. Here we present Cu-Zn deposition fluxes at 10 mountain-top sites in the Czech Republic, a region affected by extremely high industrial emission rates 25 years ago. Additionally, we monitored isotope composition of Cu and Zn in vertical and horizontal atmospheric deposition at two sites. We compared δ65Cu and δ66Zn values in snow and rime, extracted by diluted HNO3 and concentrated HF. Cu and Zn isotope signatures of industrial pollution sources were also determined. Cu and Zn deposition fluxes at all study sites were minute. The mean δ65Cu value of atmospheric deposition (-0.07‰) was higher than the mean δ65Cu value of pollution sources (-1.17‰). The variability in δ65Cu values of atmospheric deposition was lower, compared to the pollution sources. The mean δ66Zn value of atmospheric deposition (-0.09‰) was slightly higher than the mean δ66Zn value of pollution sources (-0.23‰). The variability in δ66Zn values of atmospheric deposition was indistinguishable from that of pollution sources. The largest isotope differences (0.35‰) were observed between the insoluble and soluble fractions of atmospheric deposition. These differences may result from different sources of Cu/Zn for each fraction. The difference in isotope composition of soluble and insoluble particles appears to be a promising tool for pollution provenance studies in Central Europe.


Subject(s)
Air Pollution , Copper , Snow/chemistry , Zinc , Copper/analysis , Copper/chemistry , Czech Republic , Environmental Monitoring , Europe , Ice , Isotopes/analysis , Zinc/analysis , Zinc/chemistry
4.
Environ Sci Technol ; 48(11): 6089-96, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24779992

ABSTRACT

Carcinogenic effects of hexavalent chromium in waters are of concern in many countries worldwide. We explored Cr isotope systematics at 11 sites in the Czech Republic and Poland. Geogenic Cr pollution was associated with serpentinite bodies at former convergent plate margins, while anthropogenic Cr pollution resulted from electroplating, tanning, and the chemical industry. Cr(VI) concentration in geogenic waters was less than 40 ppb. Anthropogenic waters contained up to 127,000 ppb Cr(VI). At both geogenic and anthropogenic sites, where known, the source of pollution had a low δ53Cr (<1‰). δ53Cr of geogenic and anthropogenic waters was up to 3.9 and 5.8‰, respectively. At both serpentinite-dominated and industrial sites, δ53Cr(VI)aq was shifted toward higher values, compared to the pollution source. At the industrial sites, this positive δ53Cr shift was related to Cr(VI) reduction, a process known to fractionate Cr isotopes. At geogenic sites, the origin of high δ53Cr(VI)aq is tentatively ascribed to preferential release of 53Cr during oxidation of soil Cr(III) and its mobilization to water. δ53Cr(VI) of industrially contaminated waters was significantly higher (p<0.001) compared to δ53Cr of waters carrying geogenic Cr(VI), implying that either the effective fractionation factor or process extent was greater for Cr(VI) reduction than for Cr(III) oxidation.


Subject(s)
Chromium Isotopes/analysis , Chromium/analysis , Environmental Pollution/analysis , Industrial Waste/analysis , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Chromium/chemistry , Chromium Isotopes/chemistry , Czech Republic
SELECTION OF CITATIONS
SEARCH DETAIL
...