Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters










Publication year range
1.
Prostate ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804836

ABSTRACT

BACKGROUND: Our research focused on the assessment of the impact of systemic inhibition of Trk receptors, which bind to nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), on bladder hypersensitivity in two distinct rodent models of prostatic inflammation (PI). METHODS: Male Sprague-Dawley rats were divided into three groups (n = 6 each): the control group (no PI, vehicle administration), the untreated group (PI, vehicle administration), and the treated group (PI, nonselective Trk inhibitor, GNF 5837, administration). PI in rats was induced by a intraprostatic injection of 5% formalin. Posttreatment, we carried out conscious cystometry and a range of histological and molecular analyses. Moreover, the study additionally evaluated the effects of a nonselective Trk inhibitor on bladder overactivity in a mouse model of PI, which was induced by prostate epithelium-specific conditional deletion of E-cadherin. RESULTS: The rat model of PI showed upregulations of NGF and BDNF in both bladder and prostate tissues in association with bladder overactivity and inflammation in the ventral lobes of the prostate. GNF 5837 treatment effectively mitigated these PI-induced changes, along with reductions in TrkA, TrkB, TrkC, and TRPV1 mRNA expressions in L6-S1 dorsal root ganglia. Also, in the mouse PI model, GNF 5837 treatment similarly improved bladder overactivity. CONCLUSIONS: The findings of our study suggest that Trk receptor inhibition, which reduced bladder hypersensitivity and inflammatory responses in the prostate, along with a decrease in overexpression of Trk and TRPV1 receptors in sensory pathways, could be an effective treatment strategy for male lower urinary tract symptoms associated with PI and bladder overactivity.

2.
Article in English | MEDLINE | ID: mdl-38198648

ABSTRACT

BACKGROUND: Older men frequently develop lower urinary tract symptoms attributed to benign prostatic hyperplasia (LUTS/BPH). Risk factors for LUTS/BPH include sedentary lifestyle, anxiety/depression, obesity, and frailty, which all increase with age. Although physical exercise may reduce the progression and/or severity of LUTS/BPH, the age-related mechanisms responsible remain unknown. METHODS: Voiding symptoms, body mass, and frailty were assessed after 4-weeks of voluntary wheel running in 2-month (n = 10) and 24-month (n = 8) old C57Bl/6J male mice. In addition, various social and individual behaviors were examined in these cohorts. Finally, cellular and molecular markers of inflammation and mitochondrial protein expression were assessed in prostate tissue and systemically. RESULTS: Despite running less (aged vs young X¯ = 12.3 vs 30.6 km/week; p = .04), aged mice had reduced voiding symptoms (X¯ = 67.3 vs 23.7; p < .0001) after 1 week of exercise, which was sustained through week 4 (X¯ = 67.3 vs 21.5; p < .0001). Exercise did not affect voiding symptoms in young mice. Exercise also increased mobility and decreased anxiety in both young and aged mice (p < .05). Exercise decreased expression of a key mitochondrial protein (PINK1; p < .05) and inflammation within the prostate (CD68; p < .05 and plasminogen activator inhibitor-1; p < .05) and in the serum (p < .05). However, a frailty index (X¯ = 0.17 vs 0.15; p = .46) and grip strength (X¯ = 1.10 vs 1.19; p = .24) were unchanged after 4 weeks of exercise in aged mice. CONCLUSIONS: Voluntary aerobic exercise improves voiding behavior and mobility, and decreases prostatic mitochondrial protein expression and inflammation in aged mice. This promising model could be used to evaluate molecular mechanisms of aerobic exercise as a novel lifestyle intervention for older men with LUTS/BPH.


Subject(s)
Aging , Lower Urinary Tract Symptoms , Mice, Inbred C57BL , Physical Conditioning, Animal , Animals , Male , Mice , Physical Conditioning, Animal/physiology , Aging/physiology , Lower Urinary Tract Symptoms/physiopathology , Lower Urinary Tract Symptoms/metabolism , Urination/physiology , Prostatic Hyperplasia/metabolism , Frailty/metabolism , Age Factors , Prostate/metabolism , Behavior, Animal/physiology
3.
Article in English | MEDLINE | ID: mdl-37738211

ABSTRACT

BACKGROUND: Age is the greatest risk factor for lower urinary tract symptoms attributed to benign prostatic hyperplasia (LUTS/BPH). While LUTS/BPH can be managed with pharmacotherapy, treatment failure has been putatively attributed to numerous pathological features of BPH (e.g., prostatic fibrosis, inflammation). Mitochondrial dysfunction is a hallmark of aging, however its impact on the pathological features of BPH remains unknown. METHODS: Publicly available gene array data was analyzed. Immunohistochemistry examined mitochondrial proteins in human prostate. The effect of complex I inhibition (rotenone) on a prostatic cell line was examined using qPCR, immunocytochemistry, and Seahorse assays. Oleic acid was tested as a bypass of complex I inhibition. Aged mice were treated with OA to examine its effects on urinary dysfunction. Voiding was assessed longitudinally, and a critical complex I protein measured. RESULTS: Mitochondrial function and fibrosis genes were altered in BPH. Essential mitochondrial proteins (i.e., VDAC1/2, PINK1 and NDUFS3) were significantly (P<0.05) decreased in BPH. Complex I inhibition in cultured cells resulted in decreased respiration, altered NDUFS3 expression, increased collagen deposition and gene expression. Oleic acid ameliorated these effects. Oleic acid treated aged mice had significantly (P<0.05) improved voiding function and higher prostatic NDUFS3 expression. CONCLUSION: Complex I dysfunction is a potential contributor to fibrosis and lower urinary tract dysfunction in aged mice. Oleic acid partially bypasses complex I inhibition and therefore should be further investigated as a mitochondrial modulator for treatment of LUTS/BPH. Hypotheses generated in this investigation offer a heretofore unexplored cellular target of interest for the management of LUTS/BPH.

4.
Am J Clin Exp Urol ; 11(1): 27-39, 2023.
Article in English | MEDLINE | ID: mdl-36923723

ABSTRACT

BACKGROUND: Risk factors for prostate cancer include age, environment, race and ethnicity. Genetic variants in cyclic-adenosine-monophosphate-response-element-binding protein 3 regulatory factor (CREBRF) gene are frequently observed in Pacific Islanders, a population with elevated prostate cancer incidence. CREBRF has been shown to play a role in other cancers, however its function in prostate homeostasis and tumorigenesis has not been previously explored. We determined the incidence of CREBRF alterations in publicly available databases and examined the impact of CREBRF deletion on the murine prostate in order to determine whether CREBRF impacts prostate physiology or pathophysiology. METHODS: Alterations in CREBRF were identified in prostate cancer patients via in silico analysis of several publicly available datasets through cBioPortal. Male Crebrf knockout and wild-type littermate mice were generated and examined for prostate defects at 4 months of age. Immunohistochemical staining of murine prostate sections was used to determine the impact of Crebrf knockout on proliferation, apoptosis, inflammation and blood vessel density in the prostate. Serum adipokine levels were measured using a Luminex Multiplex Assay. RESULTS: CREBRF alterations were identified in up to 4.05% of prostate tumors and the mutations identified were categorized as likely damaging. Median survival of prostate cancer patients with genetic alterations in CREBRF was 41.23 months, compared to 131 months for patients without these changes. In the murine model, the prostates of Crebrf knockout mice had reduced epithelial proliferation and increased TUNEL+ apoptotic cells. Circulating adipokines PAI-1 and MCP-1 were also altered in Crebrf knockout mice compared to age-matched controls. CONCLUSIONS: Prostate cancer patients with genetic alterations in CREBRF had a significantly decreased overall survival suggesting that wild type CREBRF may play a role in limiting prostate tumorigenesis and progression. The murine knockout model demonstrated that CREBRF could modulate proliferation and apoptosis and macrophage density in the prostate. Serum levels of adipokines PAI-1 and MCP-1 were also altered and may contribute to the phenotypic changes observed in the prostates of Crebrf knockout mice. Future studies focused on populations susceptible to CREBRF mutations and mechanistic studies will be required to fully elucidate the potential role of CREBRF in prostate tumorigenesis.

5.
Cell Death Dis ; 13(9): 754, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36050295

ABSTRACT

Ivermectin is a widely used antiparasitic drug and shows promising anticancer activity in various cancer types. Although multiple signaling pathways modulated by ivermectin have been identified in tumor cells, few studies have focused on the exact target of ivermectin. Herein, we report the pharmacological effects and targets of ivermectin in prostate cancer. Ivermectin caused G0/G1 cell cycle arrest, induced cell apoptosis and DNA damage, and decreased androgen receptor (AR) signaling in prostate cancer cells. Further in vivo analysis showed ivermectin could suppress 22RV1 xenograft progression. Using integrated omics profiling, including RNA-seq and thermal proteome profiling, the forkhead box protein A1 (FOXA1) and non-homologous end joining (NHEJ) repair executer Ku70/Ku80 were strongly suggested as direct targets of ivermectin in prostate cancer. The interaction of ivermectin and FOXA1 reduced the chromatin accessibility of AR signaling and the G0/G1 cell cycle regulator E2F1, leading to cell proliferation inhibition. The interaction of ivermectin and Ku70/Ku80 impaired the NHEJ repair ability. Cooperating with the downregulation of homologous recombination repair ability after AR signaling inhibition, ivermectin increased intracellular DNA double-strand breaks and finally triggered cell death. Our findings demonstrate the anticancer effect of ivermectin in prostate cancer, indicating that its use may be a new therapeutic approach for prostate cancer.


Subject(s)
Hepatocyte Nuclear Factor 3-alpha , Ivermectin , Ku Autoantigen , Prostatic Neoplasms , Antigens, Nuclear/genetics , Antigens, Nuclear/metabolism , DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA Repair , Hepatocyte Nuclear Factor 3-alpha/drug effects , Hepatocyte Nuclear Factor 3-alpha/metabolism , Humans , Ivermectin/pharmacology , Ivermectin/therapeutic use , Ku Autoantigen/drug effects , Ku Autoantigen/metabolism , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism
6.
Am J Clin Exp Urol ; 10(4): 234-245, 2022.
Article in English | MEDLINE | ID: mdl-36051613

ABSTRACT

BACKGROUND: Prostatic inflammation is closely linked to the development and progression of benign prostatic hyperplasia (BPH). Clinical studies of non-steroidal anti-inflammatory drugs, which inhibit cyclooxygenase-2 (COX-2), targeting prostate inflammation patients with symptomatic BPH have demonstrated conflicting results, with some studies demonstrating symptom improvement and others showing no impact. Thus, understanding the role of the cyclooxygenases in BPH and prostatic inflammation is important. METHODS: The expression of COX-1 was analyzed in a cohort of donors and BPH patients by immunohistochemistry and compared to previously determined characteristics for this same cohort. The impact of mitochondrial dysfunction on COX-1 and COX-2 was determined in experiments treating human benign prostate epithelial cell lines BPH-1 and RWPE-1 with rotenone and MitoQ. RWPE-1 cells were transfected with small interfering RNA specific to complex 1 gene NDUFS3. RESULTS: COX-1 expression was increased in the epithelial cells of BPH specimens compared to young healthy organ donor and normal prostate adjacent to BPH and frequently co-occurred with COX-2 alteration in BPH patients. COX-1 immunostaining was associated with the presence of CD8+ cytotoxic T-cells, but was not associated with age, prostate size, COX-2 or the presence of CD4+, CD20+ or CD68+ inflammatory cells. In cell line studies, COX protein levels were elevated following treatment with inhibitors of mitochondrial function. MitoQ significantly decreased mitochondrial membrane potential in RWPE-1 cells. Knockdown of NDUFS3 stimulated COX-1 expression. CONCLUSION: Our findings suggest COX-1 is elevated in BPH epithelial cells and is associated with increased presence of CD8+ cytotoxic T-cells. COX-1 can be induced in benign prostate epithelial cells in response to mitochondrial complex I inhibition, and knockdown of the complex 1 protein NDUFS3. COX-1 and mitochondrial dysfunction may play more of a role than previously recognized in the development of age-related benign prostatic disease.

7.
Aging (Albany NY) ; 14(7): 2945-2965, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35361739

ABSTRACT

Decreased E-cadherin immunostaining is frequently observed in benign prostatic hyperplasia (BPH) and was recently correlated with increased inflammation in aging prostate. Homozygous E-cadherin deletion in the murine prostate results in prostate inflammation and bladder overactivity at 6 months of age. However, this model is limited in that while E-cadherin is significantly reduced in BPH, it is not completely lost; BPH is also strongly associated with advanced age and is infrequent in young men. Here, we examined the functional consequences of aging in male mice with prostate luminal epithelial cell-specific E-cadherin heterozygosity. In control mice, aging alone resulted in an increase in prostate inflammation and changes in bladder voiding function indicative of bladder underactivity. At 24 months of age, mice with prostate-specific Cre-mediated heterozygous deletion of E-cadherin induced at 7 weeks of age developed additional prostatic defects, particularly increased macrophage inflammation and stromal proliferation, and bladder overactivity compared to age-matched control mice, which are similar to BPH/LUTS in that the phenotype is slow-progressing and age-dependent. These findings suggest that decreased E-cadherin may promote macrophage inflammation and fibrosis in the prostate and subsequent bladder overactivity in aging men, promoting the development and progression of BPH/LUTS.


Subject(s)
Prostatic Hyperplasia , Animals , Cadherins/genetics , Inflammation/complications , Macrophages , Male , Mice , Prostate , Prostatic Hyperplasia/complications , Prostatic Hyperplasia/genetics , Urinary Bladder
8.
Mol Cancer Ther ; 21(4): 483-492, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35058329

ABSTRACT

Identification of novel androgen receptor (AR) antagonists may lead to urgently needed new treatments for patients with prostate cancer resistant to current AR antagonists. AR is presently the main target for treating prostate cancer. Clinically approved AR antagonists compete with dihydrotestosterone (DHT) for binding to the ligand-binding domain (LBD) of AR, and patients eventually develop resistance to these treatments. One approach to overcoming resistance is to discover compounds that inhibit AR in alternative ways. Our lab previously identified a small molecule, JJ-450, that is capable of inhibiting AR lacking LBD. To optimize the efficacy of this class of inhibitors, we developed structural analogues of JJ-450 and identified (+)-JJ-74-138 as a promising candidate. Here, we show that (+)-JJ-74-138 is more potent than JJ-450 in the inhibition of androgen-independent AR activity in enzalutamide-resistant LN95 cells. Further studies showed (+)-JJ-74-138 inhibition of castration-resistant PSA expression in all tested castration-resistant prostate cancer (CRPC) cells. (+)-JJ-74-138 inhibited mRNA expression of AR and ARv7 target genes and reduced AR level in the nucleus in the absence of androgens. Also, this analogue noncompetitively inhibited androgen-stimulated AR activity in C4-2, LN95, and 22Rv1 CRPC cells. At low dosages, (+)-JJ-74-138 inhibited the proliferation of enzalutamide-resistant AR-positive LN95 and 22Rv1 cells, but not AR-negative PC3 and DU145 cells. A surface plasmon resonance assay detected (+)-JJ-74-138 binding to AR and a chromatin immunoprecipitation assay indicated (+)-JJ-74-138 inhibited AR binding to androgen response elements. In addition, (+)-JJ-74-138 inhibited 22Rv1 xenograft tumor growth. Our observations suggest that (+)-JJ-74-138 is a novel noncompetitive AR antagonist capable of inhibiting enzalutamide-resistant CRPC.


Subject(s)
Androgen Receptor Antagonists , Prostatic Neoplasms, Castration-Resistant , Androgen Receptor Antagonists/pharmacology , Androgens/pharmacology , Cell Line, Tumor , Humans , Male , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism
9.
Am J Clin Exp Urol ; 9(4): 287-291, 2021.
Article in English | MEDLINE | ID: mdl-34541027

ABSTRACT

This mini-review covers the classical model of androgen receptor (AR) nucleocytoplasmic trafficking and provides an overview of new data that updates the existing paradigm. The classical model of androgen receptor trafficking involves AR translocating to the nucleus in the presence of androgens and subsequently being exported back to the cytoplasm following the withdrawal of androgens. New data challenges and updates the fate of nuclear AR. In the updated model, the AR can be imported into the nucleus in the absence of androgens and nuclear AR is degraded, not exported. Further, androgens can enhance AR nuclear import and inhibit AR degradation in the nucleus; androgen withdrawal causes nuclear AR degradation, but not export. Enhanced androgen-independent AR nuclear localization and AR nuclear stability may be a hallmark of castration-resistant prostate cancer (CRPC). Further characterization of AR trafficking may aid in the development of new therapies for patients with CRPC.

10.
Am J Clin Exp Urol ; 9(1): 53-64, 2021.
Article in English | MEDLINE | ID: mdl-33816694

ABSTRACT

INTRODUCTION AND OBJECTIVE: Benign prostatic hyperplasia (BPH) is an age-related disease that is frequently associated with chronic prostatic inflammation. In previous studies, we detected the presence of PSA protein in the stroma of BPH nodules and down-regulation of junction proteins E-cadherin and claudin-1. Transmission electron microscopy (TEM) imaging showed a decrease in tight junctions suggesting the luminal epithelial barrier in BPH tissues may be compromised. Recent in vitro studies showed that stimulation of benign prostate epithelial cell lines with TGF-ß1 induced a decrease in claudin-1 expression suggesting that inflammation might be associated with alterations in the prostate epithelial barrier. This study explored the potential associations between aging and loss of junction proteins and the presence of inflammatory cells in prostate tissue specimens from young healthy donors and aged BPH patients. METHODS: Immunostaining of serial prostate sections from 13 BPH patients and five healthy young donors was performed for claudin-1, CD4, CD8, CD20 and CD68. H-Scores and the number of inflammatory cells were calculated for the same area in donor, normal adjacent prostate (NAP) to and BPH specimens. Quantification and statistical correlation analyses were performed. RESULTS: Claudin-1 immunostaining was inversely associated with increasing age, and inflammation in prostate specimens. B-cell infiltration increased with age and BPH was associated with an increased infiltration of T-cells and macrophages compared to NAP. CONCLUSIONS: These findings suggest that aging is associated with down-regulation of claudin-1 and claudin-1 is further decreased in BPH. Claudin-1 down-regulation was associated with increased infiltration of inflammatory cells in both NAP and BPH tissues. Claudin-1 down-regulation in the aging prostate could contribute to increased prostatic inflammation, subsequently contributing to BPH pathogenesis.

11.
Am J Clin Exp Urol ; 9(1): 140-149, 2021.
Article in English | MEDLINE | ID: mdl-33816702

ABSTRACT

INTRODUCTION AND OBJECTIVE: Benign prostatic hyperplasia (BPH) is a prostatic disease that is significantly associated with aging. However, it is not well understood how aging contributes to BPH pathogenesis. Several factors associated with an increased risk of BPH are also associated with increasing age, including chronic inflammation and declining epithelial barrier function. Thus, this study explored the potential associations between aging, loss of adherens junction protein E-cadherin and the presence of inflammatory mediators in prostate tissue specimens from healthy young donor and BPH patients. METHODS: Serial prostate sections from a cohort of five donors aged 15-26 years and 13 BPH patients aged 50-77 years were immunostained with E-cadherin, COX-2, CD4, CD8, CD20 and CD68. E-cadherin and COX-2 H-Scores and the number of inflammatory cells were calculated for the same area in donor, normal adjacent prostate to BPH (NAP) and BPH specimens. Quantification and statistical correlation analyses were performed for comparisons between groups. RESULTS: E-cadherin was decreased in aged NAP tissues and in BPH compared to young donor tissue. E-cadherin was inversely correlated with age and infiltration of inflammatory cells in NAP compared to young healthy donor prostate. Stromal COX-2 was positively correlated with age and inflammation. E-cadherin was further down-regulated in BPH, while COX-2 H-Scores were not significantly altered in BPH compared to NAP. CONCLUSIONS: These findings suggest that aging is associated with down-regulation of E-cadherin and up-regulation of stromal COX-2 immunostaining in the prostate. E-cadherin immunostaining was inversely associated with age and inflammation, while stromal COX-2 immunostaining was positively associated with age and inflammation in the prostate. These findings suggest that the prostate epithelial barrier is altered and inflammation is increased with age in the prostate. These changes are further exacerbated in BPH, and may be involved in BPH pathogenesis.

12.
J Clin Invest ; 131(4)2021 02 15.
Article in English | MEDLINE | ID: mdl-33332287

ABSTRACT

Nuclear localization of the androgen receptor (AR) is necessary for its activation as a transcription factor. Defining the mechanisms regulating AR nuclear localization in androgen-sensitive cells and how these mechanisms are dysregulated in castration-resistant prostate cancer (CRPC) cells is fundamentally important and clinically relevant. According to the classical model of AR intracellular trafficking, androgens induce AR nuclear import and androgen withdrawal causes AR nuclear export. The present study has led to an updated model that AR could be imported in the absence of androgens, ubiquitinated, and degraded in the nucleus. Androgen withdrawal caused nuclear AR degradation, but not export. In comparison with their parental androgen-sensitive LNCaP prostate cancer cells, castration-resistant C4-2 cells exhibited reduced nuclear AR polyubiquitination and increased nuclear AR level. We previously identified 3-(4-chlorophenyl)-6,7-dihydro-5H-pyrrolo[1,2-a]imidazole (CPPI) in a high-throughput screen for its inhibition of androgen-independent AR nuclear localization in CRPC cells. The current study shows that CPPI is a competitive AR antagonist capable of enhancing AR interaction with its E3 ligase MDM2 and degradation of AR in the nuclei of CRPC cells. Also, CPPI blocked androgen-independent AR nuclear import. Overall, these findings suggest the feasibility of targeting androgen-independent AR nuclear import and stabilization, two necessary steps leading to AR nuclear localization and activation in CRPC cells, with small molecule inhibitors.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Cell Nucleus/metabolism , Drug Delivery Systems , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism , Active Transport, Cell Nucleus/drug effects , Active Transport, Cell Nucleus/genetics , Androgen Receptor Antagonists/chemical synthesis , Androgen Receptor Antagonists/chemistry , Animals , COS Cells , Cell Line, Tumor , Cell Nucleus/genetics , Cell Nucleus/pathology , Chlorocebus aethiops , HEK293 Cells , Humans , Male , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Receptors, Androgen/genetics , Ubiquitination/drug effects , Ubiquitination/genetics
13.
Int J Biochem Cell Biol ; 131: 105898, 2021 02.
Article in English | MEDLINE | ID: mdl-33285290

ABSTRACT

Abnormal intraglandular stromal-epithelial interactions have been known as a main key contributing factor for development of Benign Prostatic Hyperplasia (BPH). However, the underlying mechanism for the dysregulated intercellular communication remains unclear. In this study we compared the proteomic profiles of hyperplastic tissue with adjacent normal tissue of BPH and identified Rab27B small GTPase, a key regulator of exocytosis, as a protein that was overexpressed in the epithelium of BPH tissue. Overexpression of Rab27B in prostatic epithelial cells strongly increased the signaling activities of the PI3K/AKT and ERK1/2 pathways, whereas, downregulation of Rab27B expression in the epithelial cells of BPH reduced the signaling activities and decreased cell proliferation. The elevated Rab27B expression caused an overall increase in cell surface presentation of growth factor receptors without affecting their expression. However, the small GTPase also possesses an inhibitory activity against mTORC1 independent of its role in cell surface presentation of growth factor receptors. Our findings demonstrate a pivotal role of the small GTPase in autocrine and paracrine signaling and suggest that its abnormal expression underlies the dysregulated stromal-epithelial interactions in BPH.


Subject(s)
Autocrine Communication/genetics , Epithelial Cells/metabolism , Paracrine Communication/genetics , Prostatic Hyperplasia/genetics , Stromal Cells/metabolism , rab GTP-Binding Proteins/genetics , Cell Line , Datasets as Topic , Epithelial Cells/pathology , Gene Expression Regulation , HEK293 Cells , Humans , Male , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Microtomy , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Prostate/metabolism , Prostate/pathology , Prostatic Hyperplasia/metabolism , Prostatic Hyperplasia/pathology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6 Kinases/genetics , Ribosomal Protein S6 Kinases/metabolism , Signal Transduction , Stromal Cells/pathology , rab GTP-Binding Proteins/metabolism
14.
Endocrinology ; 162(1)2021 01 01.
Article in English | MEDLINE | ID: mdl-33211830

ABSTRACT

Benign prostatic hyperplasia (BPH) is an age-related debilitating prostatic disease that is frequently associated with prostatic inflammation and bothersome lower urinary tract symptoms (LUTS). Animal models have shown that formalin- and bacterial-induced prostatic inflammation can induce bladder dysfunction; however, the underlying mechanisms contributing to prostatic inflammation in BPH and bladder dysfunction are not clear. We previously reported that E-cadherin expression in BPH is downregulated in hyperplastic nodules compared with expression in adjacent normal tissues. Here, we explored the potential consequences of prostatic E-cadherin downregulation on the prostate and bladder in vivo using an inducible murine model of prostate luminal epithelial-specific deletion of Cdh1. The prostate-specific antigen (PSA)-CreERT2 transgenic mouse strain expressing tamoxifen-inducible CreERT2 recombinase driven by a 6-kb human PSA promoter/enhancer was crossed with the B6.129-Cdh1tm2Kem/J mouse to generate bigenic PSA-CreERT2/Cdh1-/- mice. Deletion of E-cadherin was induced by transient administration of tamoxifen when mice reached sexual maturity (7 weeks of age). At 21 to 23 weeks of age, the prostate, bladder, and prostatic urethra were examined histologically, and bladder function was assessed using void spot assays and cystometry. Mice with Cdh1 deletion had increased prostatic inflammation, prostatic epithelial hyperplasia, and stromal changes at 21 to 23 weeks of age, as well as changes in bladder voiding function compared with age-matched controls. Thus, loss of E-cadherin in the murine prostate could result in prostatic defects that are characteristic of BPH and LUTS, suggesting that E-cadherin downregulation could be a driving force in human BPH development and progression.


Subject(s)
Cadherins/metabolism , Lower Urinary Tract Symptoms/etiology , Prostate-Specific Antigen/metabolism , Prostate/metabolism , Prostatitis/complications , Prostatitis/genetics , Animals , Cadherins/genetics , Gene Deletion , Inflammation , Lower Urinary Tract Symptoms/physiopathology , Male , Mice , Prostate/pathology , Prostatitis/pathology , Tissue Distribution , Urinary Bladder/physiopathology
15.
Prostate ; 80(14): 1177-1187, 2020 10.
Article in English | MEDLINE | ID: mdl-32659026

ABSTRACT

BACKGROUND: Benign prostatic hyperplasia (BPH) is an age-related disease characterized by nonmalignant abnormal growth of the prostate, which is also frequently associated with lower urinary tract symptoms. The prostate with BPH exhibits enhanced growth not only in the epithelium but also in the stroma, and stromal-epithelial interactions are thought to play an important role in BPH pathogenesis. However, our understanding of the mechanisms of stromal-epithelial interactions in the development and progression of BPH is very limited. METHODS: Matched pairs of glandular BPH and normal adjacent prostate specimens were obtained from BPH patients undergoing simple prostatectomy for symptomatic BPH. Tissues were divided further into fresh specimens for culture of primary prostatic stromal cells, and specimens were embedded in paraffin for immunohistochemical analyses. Proliferation assays, immunohistochemistry, and immunoblotting were used to characterize the primary prostate stromal cells and tissue sections. Coculture of the primary stromal cells with benign human prostate epithelial cell lines BHPrE1 or BPH-1 was performed in three-dimensional (3D) Matrigel to determine the impact of primary stromal cells derived from BPH on epithelial proliferation. The effect of stromal-conditioned medium (CM) on BHPrE1 and BPH-1 cell growth was tested in 3D Matrigel as well. RESULTS: BPH stromal cells expressed less smooth muscle actin and calponin and increased vimentin, exhibiting a more fibroblast and myofibroblast phenotype compared with normal adjacent stromal cells both in culture and in corresponding paraffin sections. Epithelial spheroids formed in 3D cocultures with primary BPH stromal cells were larger than those formed in coculture with primary normal stromal cells. Furthermore, CM from BPH stromal cells stimulated epithelial cell growth while CM from normal primary stromal cells did not in 3D culture. CONCLUSIONS: These findings suggest that the stromal cells in BPH tissues are different from normal adjacent stromal cells and could promote epithelial cell proliferation, potentially contributing to the development and progression of BPH.


Subject(s)
Epithelial Cells/pathology , Prostatic Hyperplasia/pathology , Stromal Cells/pathology , Cell Communication/physiology , Cell Culture Techniques/methods , Cell Growth Processes/physiology , Coculture Techniques , Culture Media, Conditioned , Humans , Immunohistochemistry , Male , Paraffin Embedding , Primary Cell Culture , Spheroids, Cellular
16.
Cancer Manag Res ; 12: 4411-4427, 2020.
Article in English | MEDLINE | ID: mdl-32606936

ABSTRACT

BACKGROUND: Elongation factor for RNA polymerase II 2 (ELL2) was reported as a putative tumor suppressor in the prostate. ELL2 is frequently down-regulated in prostatic adenocarcinoma specimens, and loss of ELL2 induced murine prostatic intraepithelial neoplasia and enhanced AR-positive prostate cancer cell proliferation. However, the ELL2 gene appears to be amplified in AR-negative neuroendocrine prostate tumors, suggesting a potential oncogenic role for ELL2 in AR-negative prostate cancer cells. In this study, we explored the potential function of ELL2 in PC-3 and DU145, two AR-negative prostate cancer cell lines. MATERIALS AND METHODS: The role of ELL2 in PC-3 and DU145 cells was studied using siRNA-mediated ELL2 knockdown. Genes regulated by ELL2 knockdown in PC-3 cells were identified and analyzed using RNA-Seq and bioinformatics. The expression of representative genes was confirmed by Western blot and/or quantitative PCR. Cell growth was determined by BrdU, MTT and colony formation assays. Cell death was analyzed by 7-AAD/Annexin V staining and trypan blue exclusion staining. Cell cycle was determined by PI staining and flow cytometry. RESULTS: ELL2 knockdown inhibited the proliferation of PC-3 and DU145 cells. RNA-Seq analysis showed an enrichment in genes associated with cell death and survival following ELL2 knockdown. The interferon-γ pathway was identified as the top canonical pathway comprising of 55.6% of the genes regulated by ELL2. ELL2 knockdown induced an increase in STAT1 and IRF1 mRNA and an induction of total STAT1 and phosphorylated STAT1 protein. Inhibition of cell proliferation by ELL2 knockdown was partly abrogated by STAT1 knockdown. ELL2 knockdown inhibited colony formation and induced apoptosis in both PC-3 and DU145 cells. Furthermore, knockdown of ELL2 caused S-phase cell cycle arrest, inhibition of CDK2 phosphorylation and cyclin D1 expression, and increased expression of cyclin E. CONCLUSION: ELL2 knockdown in PC-3 and DU145 cells induced S-phase cell cycle arrest and profound apoptosis, which was accompanied by the induction of genes associated with cell death and survival pathways. These observations suggest that ELL2 is a potential oncogenic protein required for survival and proliferation in AR-negative prostate cancer cells.

17.
Prostate ; 80(14): 1203-1215, 2020 10.
Article in English | MEDLINE | ID: mdl-32692865

ABSTRACT

BACKGROUND: Benign prostatic hyperplasia (BPH) is arguably the most common disease in aging men. Although the etiology is not well understood, chronic prostatic inflammation is thought to play an important role in BPH initiation and progression. Our recent studies suggest that the prostatic epithelial barrier is compromised in glandular BPH tissues. The proinflammatory cytokine transforming growth factor beta 1 (TGF-ß1) impacts tight junction formation, enhances epithelial barrier permeability, and suppresses claudin-1 messenger RNA expression in prostatic epithelial cells. However, the role of claudin-1 in the prostatic epithelial barrier and its regulation by TGF-ß1 in prostatic epithelial cells are not clear. METHODS: The expression of claudin-1 was analyzed in 22 clinical BPH specimens by immunohistochemistry. Human benign prostate epithelial cell lines BPH-1 and BHPrE1 were treated with TGF-ß1 and transfected with small interfering RNAs specific to claudin-1. Epithelial monolayer permeability changes in the treated cells were measured using trans-epithelial electrical resistance (TEER). The expression of claudin-1, E-cadherin, N-cadherin, snail, slug, and activation of mitogen-activated proteins kinases (MAPKs) and AKT was assessed following TGF-ß1 treatment using Western blot analysis. RESULTS: Claudin-1 expression was decreased in glandular BPH tissue compared with adjacent normal prostatic tissue in patient specimens. TGF-ß1 treatment or claudin-1 knockdown in prostatic epithelial cell lines increased monolayer permeability. TGF-ß1 decreased levels of claudin-1 and increased levels of snail and slug as well as increased phosphorylation of the MAPK extracellular signal-regulated kinase-1/2 (ERK-1/2) in both BPH-1 and BHPrE1 cells. Overexpression of snail or slug had no effect on claudin-1 expression. In contrast, PD98059 and U0126, inhibitors of the upstream activator of ERK-1/2 (ie, MEK-1/2) restored claudin-1 expression level as well as the epithelial barrier. CONCLUSION: Our findings suggest that downregulation of claudin-1 by TGF-ß1 acting through the noncanonical MEK-1/2/ERK-1/2 pathway triggers increased prostatic epithelial monolayer permeability in vitro. These findings also suggest that elevated TGF-ß1 may contribute to claudin-1 downregulation and compromised epithelial barrier in clinical BPH specimens.


Subject(s)
Claudin-1/metabolism , MAP Kinase Kinase 1/metabolism , MAP Kinase Signaling System , Prostatic Hyperplasia/metabolism , Transforming Growth Factor beta1/metabolism , Cell Line , Claudin-1/biosynthesis , Claudin-1/genetics , Down-Regulation , Epithelial Cells/metabolism , Epithelial Cells/pathology , Flavonoids/pharmacology , Gene Knockdown Techniques , Humans , Immunohistochemistry , MAP Kinase Kinase 1/antagonists & inhibitors , Male , Permeability , Prostatic Hyperplasia/genetics , Prostatic Hyperplasia/pathology , Protein Kinase Inhibitors/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Snail Family Transcription Factors/metabolism
18.
Am J Clin Exp Urol ; 8(1): 9-17, 2020.
Article in English | MEDLINE | ID: mdl-32211449

ABSTRACT

Our recent studies identifying the presence of luminal secretory protein PSA in the stroma, decreased E-cadherin expression, and reduced number of tight junction kiss points in benign prostatic hyperplasia (BPH) tissues suggest that epithelial barrier permeability is increased in BPH. However, the cause of increased epithelial permeability in BPH is unclear. Transforming growth factor beta 1 (TGF-ß1) has been reported to be up-regulated in clinical BPH specimens and TGF-ß1 overexpression induced fibrosis and inflammation in a murine model. TGF-ß1 was reported to repress the expression of E-cadherin in benign prostatic cells. However, whether and how TGF-ß1 up-regulation affects epithelial barrier permeability is unknown. Here, in vitro benign prostatic epithelial cell lines BHPrE1 and BPH-1 were utilized to determine the impact of TGF-ß1 treatment on epithelial barrier, tight junctions, and expression of E-cadherin and claudin 1 by transepithelial electrical resistance (TEER) measurement, FITC-dextran trans-well diffusion assays, qPCR, as well as transmission electron microscopy (TEM) observation. Laser capture micro-dissection (LCM) combined with reverse transcription-polymerase chain reaction (qPCR) were utilized to determine the expression of E-cadherin and claudin 1 in BPH patient specimens. TGF-ß1 treatment decreased TEER, increased FITC-dextran diffusion, and reduced the mRNA expression of junction protein claudin 1 in cultured cell monolayers. Claudin 1 mRNA but not E-cadherin mRNA was down-regulated in the luminal epithelial cells in BPH nodules compared to normal prostate tissues. Our studies suggest that TGF-ß1 could increase the permeability through decreasing the expression of claudin 1 and inhibiting the formation of tight junctions in BHPrE1 and BPH-1 monolayers. These results suggest that TGF-ß1 might play an important role in BPH pathogenesis through increasing the permeability of luminal epithelial barrier in the prostate.

19.
Am J Clin Exp Urol ; 8(1): 18-27, 2020.
Article in English | MEDLINE | ID: mdl-32211450

ABSTRACT

Defining the cell of origin for prostatic carcinogenesis is fundamentally important for understanding the mechanisms leading to prostate cancer. Lineage tracing studies have demonstrated that luminal epithelial cells are capable of self-replication in multiple organs, including the adult murine prostate, and cell of prostate cancer origin studies have shown that while both the luminal and basal murine prostate epithelial cells are capable of neoplastic transformation, luminal cells are more efficient as the origin of prostate cancer. ELL-associated factor 2 (EAF2) is an androgen responsive tumor suppressive protein expressed by prostate luminal epithelial cells that is frequently down-regulated in primary prostate tumors. EAF2 knockdown induces prostate cancer cell proliferation and invasion in vitro and mice with Eaf2 deficiency develop epithelial hyperplasia and murine prostatic intraepithelial neoplasia (mPIN) lesions. Here, we utilized an Eaf2 knockout, PSA-CreERT2 transgenic model crossed with a fluorescent reporter line to show that Eaf2 deficiency induces mPIN lesions derived from the luminal cell lineage. These results suggest that PIN lesions in the Eaf2 knockout mouse were derived from prostate luminal epithelial cells, further suggesting that the prostatic luminal epithelial cell is the major origin of prostate carcinogenesis.

20.
Prostate ; 80(4): 352-364, 2020 03.
Article in English | MEDLINE | ID: mdl-31905248

ABSTRACT

BACKGROUND: Signal regulatory protein ß1 (SIRPB1) is a signal regulatory protein member of the immunoglobulin superfamily and is capable of modulating receptor tyrosine kinase-coupled signaling. Copy number variations at the SIRPB1 locus were previously reported to associate with prostate cancer aggressiveness in patients, however, the role of SIRPB1 in prostate carcinogenesis is unknown. METHODS: Fluorescence in situ hybridization and laser-capture microdissection coupled with quantitative polymerase chain reaction was utilized to determine SIRPB1 gene amplification and messenger RNA expression in prostate cancer specimens. The effect of knockdown of SIRPB1 by RNA interference in PC3 prostate cancer cells on cell growth in colony formation assays and cell mobility in wound-healing, transwell assays, and cell cycle analysis was determined. Overexpression of SIPRB1 in C4-2 prostate cancer cells on cell migration, invasion, colony formation and cell cycle progression and tumor take rate in xenografts was also determined. Western blot assay of potential downstream SIRPB1 pathways was also performed. RESULTS: SIRPB1 gene amplification was detected in up to 37.5% of prostate cancer specimens based on in silico analysis of several publicly available datasets. SIRPB1 gene amplification and overexpression were detected in prostate cancer specimens. The knockdown of SIRPB1 significantly suppressed cell growth in colony formation assays and cell mobility. SIRPB1 knockdown also induced cell cycle arrest during the G0 /G1 phase and enhancement of apoptosis. Conversely, overexpression of SIPRB1 in C4-2 prostate cancer cells significantly enhanced cell migration, invasion, colony formation, and cell cycle progression and increased C4-2 xenograft tumor take rate in nude mice. Finally, this study presented evidence for SIRPB1 regulation of Akt phosphorylation and showed that Akt inhibition could abolish SIRPB1 stimulation of prostate cancer cell proliferation. CONCLUSIONS: These results suggest that SIRPB1 is a potential oncogene capable of activating Akt signaling to stimulate prostate cancer proliferation and could be a biomarker for patients at risk of developing aggressive prostate cancer.


Subject(s)
Neural Cell Adhesion Molecules/genetics , Neural Cell Adhesion Molecules/metabolism , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/physiology , Enzyme Activation , Gene Amplification , Heterografts , Humans , Male , Mice , Mice, Nude , Neural Cell Adhesion Molecules/biosynthesis , PC-3 Cells , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...