Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
SLAS Technol ; 29(3): 100135, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703999

ABSTRACT

Laboratory management automation is essential for achieving interoperability in the domain of experimental research and accelerating scientific discovery. The integration of resources and the sharing of knowledge across organisations enable scientific discoveries to be accelerated by increasing the productivity of laboratories, optimising funding efficiency, and addressing emerging global challenges. This paper presents a novel framework for digitalising and automating the administration of research laboratories through The World Avatar, an all-encompassing dynamic knowledge graph. This Digital Laboratory Framework serves as a flexible tool, enabling users to efficiently leverage data from diverse systems and formats without being confined to a specific software or protocol. Establishing dedicated ontologies and agents and combining them with technologies such as QR codes, RFID tags, and mobile apps, enabled us to develop modular applications that tackle some key challenges related to lab management. Here, we showcase an automated tracking and intervention system for explosive chemicals as well as an easy-to-use mobile application for asset management and information retrieval. Implementing these, we have achieved semantic linking of BIM and BMS data with laboratory inventory and chemical knowledge. Our approach can capture the crucial data points and reduce inventory processing time. All data provenance is recorded following the FAIR principles, ensuring its accessibility and interoperability.


Subject(s)
Automation, Laboratory , Automation, Laboratory/methods , Laboratories , Information Storage and Retrieval/methods
2.
ACS Omega ; 9(12): 13883-13896, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38559914

ABSTRACT

In this study, we present a question answering (QA) system for chemistry, named Marie, with the use of a text-to-text pretrained language model to attain accurate data retrieval. The underlying data store is "The World Avatar" (TWA), a general world model consisting of a knowledge graph that evolves over time. TWA includes information about chemical species such as their chemical and physical properties, applications, and chemical classifications. Building upon our previous work on KGQA for chemistry, this advanced version of Marie leverages a fine-tuned Flan-T5 model to seamlessly translate natural language questions into SPARQL queries with no separate components for entity and relation linking. The developed QA system demonstrates competence in providing accurate results for complex queries that involve many relation hops as well as showcasing the ability to balance correctness and speed for real-world usage. This new approach offers significant advantages over the prior implementation that relied on knowledge graph embedding. Specifically, the updated system boasts high accuracy and great flexibility in accommodating changes and evolution of the data stored in the knowledge graph without necessitating retraining. Our evaluation results underscore the efficacy of the improved system, highlighting its superior accuracy and the ability in answering complex questions compared to its predecessor.

3.
J Chem Inf Model ; 63(21): 6569-6586, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37883649

ABSTRACT

Web ontologies are important tools in modern scientific research because they provide a standardized way to represent and manage web-scale amounts of complex data. In chemistry, a semantic database for chemical species is indispensable for its ability to interrelate and infer relationships, enabling a more precise analysis and prediction of chemical behavior. This paper presents OntoSpecies, a web ontology designed to represent chemical species and their properties. The ontology serves as a core component of The World Avatar knowledge graph chemistry domain and includes a wide range of identifiers, chemical and physical properties, chemical classifications and applications, and spectral information associated with each species. The ontology includes provenance and attribution metadata, ensuring the reliability and traceability of data. Most of the information about chemical species are sourced from PubChem and ChEBI data on the respective compound Web pages using a software agent, making OntoSpecies a comprehensive semantic database of chemical species able to solve novel types of problems in the field. Access to this reliable source of chemical data is provided through a SPARQL end point. The paper presents example use cases to demonstrate the contribution of OntoSpecies in solving complex tasks that require integrated semantically searchable chemical data. The approach presented in this paper represents a significant advancement in the field of chemical data management, offering a powerful tool for representing, navigating, and analyzing chemical information to support scientific research.


Subject(s)
Knowledge Discovery , Software , Reproducibility of Results , Databases, Factual , Semantics
4.
ACS Omega ; 8(2): 2462-2475, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36687109

ABSTRACT

In this work, a new OntoPESScan ontology is developed for the semantic representation of one-dimensional potential energy surface (PES) scans, a central concept in computational chemistry. This ontology is developed in line with knowledge graph principles and The World Avatar (TWA) project. OntoPESScan is linked to other ontologies for chemistry in TWA, including OntoSpecies, which helps uniquely identify species along the PES and access their properties, and OntoCompChem, which allows the association of potential energy surfaces with quantum chemical calculations and the concepts used to derive them. A force-field fitting agent is also developed that makes use of the information in the OntoPESScan ontology to fit force fields to reactive surfaces of interest on the fly by making use of the empirical valence bond methodology. This agent is demonstrated to successfully parametrize two cases, namely, a PES scan on ethanol and a PES scan on a localized π-radical PAH hypothesized to play a role in soot formation during combustion. OntoPESScan is an extension to the capabilities of TWA and, in conjunction with potential further ontological support for molecular dynamics and reactions, will further progress toward an open, continuous, and self-growing knowledge graph for chemistry.

5.
J Am Chem Soc ; 143(31): 12212-12219, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34338507

ABSTRACT

Soot emitted from incomplete combustion of hydrocarbon fuels contributes to global warming and causes human disease. The mechanism by which soot nanoparticles form within hydrocarbon flames is still an unsolved problem in combustion science. Mechanisms proposed to date involving purely chemical growth are limited by slow reaction rates, whereas mechanisms relying on solely physical interactions between molecules are limited by weak intermolecular interactions that are unstable at flame temperatures. Here, we show evidence for a reactive π-diradical aromatic soot precursor imaged using non-contact atomic force microscopy. Localization of π-electrons on non-hexagonal rings was found to allow for Kekulé aromatic soot precursors to possess a triplet diradical ground state. Barrierless chain reactions are shown between these reactive sites, which provide thermally stable aromatic rim-linked hydrocarbons under flame conditions. Quantum molecular dynamics simulations demonstrate physical condensation of aromatics that survive for tens of picoseconds. Bound internal rotors then enable the reactive sites to find each other and become chemically cross-linked before dissociation. These species provide a rapid, thermally stable chain reaction toward soot nanoparticle formation and could provide molecular targets for limiting the emission of these toxic combustion products.

SELECTION OF CITATIONS
SEARCH DETAIL