Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Plant Dis ; 108(2): 365-374, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37578362

ABSTRACT

Fusarium root rot is an important disease of field pea (Pisum sativum var. sativum L.) that occurs everywhere pea is grown, causing yield loss of up to 75%. Fusarium root rot is caused by a complex of Fusarium species, most notably Fusarium solani in the Pacific Northwest of the United States and F. avenaceum in the northern Great Plains of the United States and Canada. F. oxysporum f. sp. pisi (Fop) was frequently isolated from peas exhibiting root rot symptoms in North Dakota during recent surveys. Fop causes wilt (races 1, 5, and 6) and near wilt (race 2) on pea. However, its contribution to pea root rot remains unclear. Fop race was determined for isolates from North Dakota pea root rot surveys. ND Fop isolates were evaluated for root rot pathogenicity and aggressiveness at standard and elevated temperatures. Results from greenhouse wilt assays indicated that all Fop races exist in North Dakota, with race 2 most prevalent among the 25 North Dakota isolates evaluated. Root rot evaluations conducted at 21/18°C and 25/19°C day/night temperatures demonstrated that most Fop isolates were as aggressive or more aggressive than F. solani and F. avenaceum under both temperature regimes. Aggressiveness of Fop isolates tended to increase at elevated assay temperatures. Results from these experiments indicate that Fop may be an important contributor to the root rot complex of field pea in North Dakota and should be considered in integrated pest management strategies, including pea breeding efforts to improve resistance to Fusarium root rot.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Fusarium , Pisum sativum , Plant Diseases , United States , Temperature , North Dakota , Plant Breeding
2.
Front Plant Sci ; 14: 1165269, 2023.
Article in English | MEDLINE | ID: mdl-37600208

ABSTRACT

Worldwide, Ascochyta blight is caused by a complex of host-specific fungal pathogens, including Ascochyta pisi, Didymella pinodes, and Didymella pinodella. The application of foliar fungicides is often necessary for disease management, but a better understanding of pathogen prevalence, aggressiveness, and fungicide sensitivity is needed to optimize control. Leaf and stem samples were obtained from 56 field pea production fields in 14 counties in North Dakota from 2017 to 2020 and isolates were collected from lesions characteristic of Ascochyta blight. Based on fungal characteristics and sequencing the ITS1-5.8S-ITS2 region, 73% of isolates were confirmed to be D. pinodes (n = 177) and 27% were A. pisi (n = 65). Across pathogens, aggressiveness was similar among some isolates in greenhouse assays. The in vitro pyraclostrobin sensitivity of all D. pinodes isolates collected from 2017 to 2020 was lower than that of the three baseline isolates. Sensitivity of 91% of A. pisi isolates collected in 2019 and 2020 was lower than the sensitivity of two known sensitive isolates. Resistance factors (Rf) from mean EC50 values of pyraclostrobin baseline/known sensitive isolates to isolates collected from 2017 to 2020 ranged from 2 to 1,429 for D. pinodes and 1 to 209 for A. pisi. In vitro prothioconazole sensitivity of 91% of D. pinodes isolates collected from 2017 to 2020 was lower than the sensitivity of the baseline isolates and 98% of A. pisi isolates collected from 2019 to 2020 was lower than the sensitivity of the known sensitive isolates. Prothioconazole Rf ranged from 1 to 338 for D. pinodes and 1 to 127 for A. pisi. Based on in vitro results, 92% of D. pinodes and 98% of A. pisi isolates collected displayed reduced-sensitivity/resistance to both fungicides when compared to baseline/known sensitive isolates. Disease control under greenhouse conditions of both pathogens provided by both fungicides was significantly lower in isolates determined to be reduced-sensitive or resistant in in vitro assays when compared to sensitive. Results reported here reinforce growers desperate need of alternative fungicides and/or management tools to fight Ascochyta blight in North Dakota and neighboring regions.

3.
Plant Dis ; 106(7): 1919-1928, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34978878

ABSTRACT

Brown leaf spot of potato is caused by a number of small-spored Alternaria spp. Alternaria alternata sensu stricto, A. arborescens, and A. tenuissima have been reported with increasing frequency in commercial potato fields. Potato cultivars with resistance to small-spored Alternaria spp. have yet to be developed; therefore, the application of foliar fungicides is a primary management strategy. Greenhouse inoculation assays demonstrated that isolates of these three small-spored Alternaria spp. were pathogenic. Significant differences in aggressiveness were observed across isolates; however, there was no trend in aggressiveness based on species. Significant fungicide by isolate interactions in in vitro fungicide sensitivity and significant differences between baseline and nonbaseline isolates were observed in all three small-spored Alternaria spp. The ranges of in vitro sensitivity of A. alternata baseline isolates to boscalid (EC50 <0.010 to 0.89 µg/ml), fluopyram (<0.010 to 1.14 µg/ml) and solatenol (<0.010 to 1.14 µg/ml) were relatively wide when compared with adepidyn (<0.010 to 0.023 µg/ml). The baseline sensitivities of A. arborescens and A. tenuissima isolates to all four fungicides were <0.065 µg/ml. Between 10 and 21% of nonbaseline A. alternata isolates fell outside the baseline range established for the four succinate dehydrogenase inhibitor (SDHI) fungicides evaluated. In A. arborescens, 10 to 80% of nonbaseline isolates had higher sensitivities than the baseline. A. tenuissima isolates fell outside the baseline for boscalid (55%), fluopyram (14%), and solatenol (14%), but none fell outside the baseline range for adepidyn. Evaluations of in vivo fungicide efficacy demonstrated that most isolates were equally controlled by the four SDHI fungicides. However, reduced boscalid efficacy was observed for four isolates (two each of A. arborescens and A. tenuissima) and reduced fluopyram control was observed in one A. alternata isolate. Results of these studies demonstrate that isolates of all three species could be contributing to the brown leaf spot pathogen complex and that monitoring both species diversity and fungicide sensitivity could be advantageous for the management of brown leaf spot in potatoes with SDHI fungicides.


Subject(s)
Fungicides, Industrial , Solanum tuberosum , Alternaria , Drug Resistance, Fungal , Fungicides, Industrial/pharmacology , Succinate Dehydrogenase , Succinic Acid
4.
Plant Dis ; 106(3): 938-946, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34410862

ABSTRACT

Pea seed-borne mosaic virus (PSbMV), a nonpersistently aphid-transmitted potyvirus, has been reported in field pea (Pisum sativum L.)-growing regions worldwide. In 2014, PSbMV was first identified in field peas in North Dakota, U.S.A. Susceptibility and yield losses attributed to PSbMV infection are influenced by viral pathotype and host genotype. Isolate ND14-1, recovered from North Dakota infected seed and identified as pathotype 4 (P4), was mechanically inoculated onto 20 field pea cultivars under greenhouse conditions. PSbMV susceptibility, number of seeds and pods per plant, yield, symptom expression, and PSbMV seed transmission rates were assessed by cultivar. A risk assessment was developed based on cultivar susceptibility, yield reduction, and PSbMV seed transmission. Risk factors were weighted based on perceived importance to commercial field pea producers. Three cultivars were classified as low risk, seven cultivars were classified as intermediate risk, and 10 cultivars were classified as high risk. Two of the low-risk cultivars, Aragorn and Cruiser, were confirmed to be resistant to this isolate of PSbMV. Cultivar Arcadia was susceptible to PSbMV infection with mild expression of symptoms, but was classified as low risk based on a low seed transmission rate and diminished yield losses. This risk assessment could prove a useful tool for growers in field pea cultivar selection where PSbMV is prevalent.


Subject(s)
Pisum sativum , Potyvirus , Pisum sativum/genetics , Potyvirus/genetics , Risk Assessment , Seeds
5.
Front Plant Sci ; 12: 621097, 2021.
Article in English | MEDLINE | ID: mdl-33719292

ABSTRACT

Dry bean (Phaseolus vulgaris L.) is an important worldwide legume crop with low to moderate levels of resistance to common bacterial blight (CBB) caused by Xanthomonas axonopodis pv. phaseoli. A total of 852 genotypes (cultivars, preliminary and advanced breeding lines) from the North Dakota State University dry bean breeding program were tested for their effectiveness as populations for genome-wide association studies (GWAS) to identify genomic regions associated with resistance to CBB, to exploit the associated markers for marker-assisted breeding (MAB), and to identify candidate genes. The genotypes were evaluated in a growth chamber for disease resistance at both the unifoliate and trifoliate stages. At the unifoliate stage, 35% of genotypes were resistant, while 25% of genotypes were resistant at the trifoliate stage. Libraries generated from each genotype were sequenced using the Illumina platform. After filtering for sequence quality, read depth, and minor allele frequency, 41,998 single-nucleotide polymorphisms (SNPs) and 30,285 SNPs were used in GWAS for the Middle American and Andean gene pools, respectively. One region near the distal end of Pv10 near the SAP6 molecular marker from the Andean gene pool explained 26.7-36.4% of the resistance variation. Three to seven regions from the Middle American gene pool contributed to 25.8-27.7% of the resistance, with the most significant peak also near the SAP6 marker. Six of the eight total regions associated with CBB resistance are likely the physical locations of quantitative trait loci identified from previous genetic studies. The two new locations associated with CBB resistance are located at Pv10:22.91-23.36 and Pv11:52.4. A lipoxgenase-1 ortholog on Pv10 emerged as a candidate gene for CBB resistance. The state of one SNP on Pv07 was associated with susceptibility. Its subsequent use in MAB would reduce the current number of lines in preliminary and advanced field yield trial by up to 14% and eliminate only susceptible genotypes. These results provide a foundational SNP data set, improve our understanding of CBB resistance in dry bean, and impact resource allocation within breeding programs as breeding populations may be used for dual purposes: cultivar development as well as genetic studies.

6.
Plant Dis ; 105(10): 3015-3024, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33736470

ABSTRACT

Early blight, caused by Alternaria solani, is observed annually in all midwestern potato production areas. The use of foliar fungicides remains a primary management strategy. However, A. solani has developed reduced sensitivity or resistance to many single-site fungicides such as quinone outside inhibitor (QoI, FRAC group 11), succinate dehydrogenase inhibitor (SDHI, FRAC group 7), demethylation inhibitor (DMI, FRAC group 3), and anilinopyrimidine (AP, FRAC group 9) fungicides. Boscalid, fluopyram, solatenol, and adepidyn are EPA-registered SDHI fungicides used commercially on a variety of crops, including potato. Five SDH mutations have been characterized previously in A. solani that affect the efficacy of boscalid while only one of these mutations has been demonstrated to negatively affect fluopyram efficacy. Conidial germination assays were used to determine if a shift in sensitivity has occurred in these SDHI fungicides. A. solani isolates collected prior to the commercial application of SDHI fungicides (baseline) were compared with recently collected isolates (nonbaseline). Greenhouse evaluations were conducted also to evaluate the efficacy of boscalid, fluopyram, solatenol, and adepidyn on A. solani isolates possessing individual SDH mutations. Additionally, field trials were conducted to determine the effects of application of these SDHI fungicides on the frequency of SDH mutations. Fluopyram, solatenol, and adepidyn had high intrinsic activity against A. solani when compared with boscalid, based on in vitro assays. The application of adepidyn and solatenol resulted in greater early blight control than the application of boscalid and fluopyram in greenhouse experiments. Molecular characterization of A. solani isolates collected from the field trials determined that the frequency of the H134R-mutation can increase in response to more recently developed SDHI fungicides. In contrast, the H278R/Y- and H133R-mutations decreased to the point of being nearly absent in these field experiments.


Subject(s)
Fungicides, Industrial , Alternaria , Drug Resistance, Fungal/genetics , Fungicides, Industrial/pharmacology , Mutation , Norbornanes , Plant Diseases , Pyrazoles , Succinate Dehydrogenase/genetics
7.
Plant Dis ; 105(2): 392-399, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32729800

ABSTRACT

Anthracnose, caused by the fungal pathogen Colletotrichum lindemuthianum, is a damaging seed-transmitted disease of dry beans that causes reduced seed quality and yield. Seed-to-seedling transmission of C. lindemuthianum has been documented as high as 15% in asymptomatic seeds under greenhouse conditions. Increasing pathogen colonization in seeds has been correlated with increasing anthracnose seed symptoms via quantitative PCR (qPCR), but stem colonization has not been quantified. Previous studies also have characterized seed yield and quality losses caused by planting C. lindemuthianum-infected seeds, but none evaluated the effect of growing asymptomatic seeds on disease and plant development under field conditions. A real-time qPCR assay was developed in this study and used to detect C. lindemuthianum in the stems of seedlings as early as 15 days after planting. Field trials measured the seed-to-seedling transmission of C. lindemuthianum across levels of anthracnose symptoms in seeds ranging from healthy to severely discolored. Results from these two field trials indicated that emergence and yield decreased and foliar symptoms, pathogen detection, and incidence of symptoms on progeny seeds increased as the severity of infection in planted seeds increased. In both years, planting asymptomatic seeds resulted in higher anthracnose severity than planting healthy seeds. Yield, seed weight, and incidence of symptoms on progeny seeds were not higher in asymptomatic seeds than in healthy seeds in 2014, when moderate disease pressure was observed. However, these factors were significantly different in 2015, when anthracnose severity was driven up to 75% by conducive weather conditions. This serves as a strong warning to growers that planting seed grown in a field where anthracnose was present, even if those seeds are asymptomatic, can result in yield and quality losses. Planting certified dry bean seed is always recommended.


Subject(s)
Colletotrichum , Phaseolus , Plant Diseases , Seeds
8.
Front Genet ; 11: 475, 2020.
Article in English | MEDLINE | ID: mdl-32612633

ABSTRACT

Common bean (Phaseolus vulgaris L.) production worldwide is hampered by Fusarium root rot (FRR), which is caused by Fusarium solani. Screening for FRR resistance on a large scale is notoriously difficult and often yields inconsistent results due to variability within the environment and pathogen biology. A greenhouse screening assay was developed incorporating multiple isolates of F. solani to improve assay reproducibility. The Andean (ADP; n = 270) and Middle American (MDP; n = 280) Diversity Panels were screened in the greenhouse to identify genetic factors associated with FRR resistance. Forty-seven MDP and 34 ADP lines from multiple market classes were identified as resistant to FRR. Greenhouse phenotyping repeatability was confirmed via five control lines. Genome-wide association mapping using ∼200k SNPs was performed on standard phenotyping score 1-9, as well as binary and polynomial transformation of score data. Sixteen and seven significant genomic regions were identified for ADP and MDP, respectively, using all three classes of phenotypic data. Most candidate genes were associated with plant immune/defense mechanisms. For the ADP population, ortholog of glucan synthase-like enzyme, senescence-associated genes, and NAC domain protein, associated with peak genomic region Pv08:0.04-0.18 Mbp, were the most significant candidate genes. For the MDP population, the peak SNPs Pv07:15.29 Mbp and Pv01:51 Mbp mapped within gene models associated with ethylene response factor 1 and MAC/Perforin domain-containing gene respectively. The research provides a basis for bean improvement through the use of resistant genotypes and genomic regions for more durable root rot resistance.

9.
Plant Dis ; 103(11): 2821-2824, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31509493

ABSTRACT

Early blight is an economically important foliar disease of potato in the United States. Because of the lack of resistant potato cultivars, fungicides are applied extensively to obtain adequate control. To manage early blight, standard protectant fungicides and single-site mode-of-action "specialty" fungicides are applied either alone or incorporated into a fungicide rotation program. Control efficacy at two crop growth stages (tuber initiation/early bulking and late bulking/tuber maturation) and the overall tuber yield response to standard and specialty fungicides were assessed using network metaanalytic models. Control efficacy of fungicides ranged from moderate to very high (>30 to 75%) compared with the nontreated control. For both potato growth stages, specialty fungicides performed better than standard protectant fungicides. Furthermore, control efficacy of both fungicides was higher (3 to 9%) at late bulking and tuber maturation when compared with early bulking crop growth stage. Specialty fungicide programs increased overall tuber yields by 4 and 9% over standard fungicides and nontreated control, respectively. Based on the results, more precise fungicide use recommendations and fungicide programs can be developed for early blight management.


Subject(s)
Fungicides, Industrial , Plant Diseases , Solanum tuberosum , Fungicides, Industrial/standards , Plant Diseases/prevention & control , Solanum tuberosum/microbiology , United States
10.
Front Plant Sci ; 10: 956, 2019.
Article in English | MEDLINE | ID: mdl-31396253

ABSTRACT

Rhizoctonia solani Kühn (teleomorph Thanatephorus cucumeris) is an important root rot pathogen of common bean (Phaseolus vulgaris L.). To uncover genetic factors associated with resistance to the pathogen, the Andean (ADP; n = 273) and Middle American (MDP; n = 279) diversity panels, which represent much of the genetic diversity known in cultivated common bean, were screened in the greenhouse using R. solani anastomosis group 2-2. Repeatability of the assay was confirmed by the response of five control genotypes. The phenotypic data for both panels were normally distributed. The resistance responses of ∼10% of the ADP (n = 28) and ∼6% of the MDP (n = 18) genotypes were similar or higher than that of the resistant control line VAX 3. A genome-wide association study (GWAS) was performed using ∼200k single nucleotide polymorphisms to discover genomic regions associated with resistance in each panel, For GWAS, the raw phenotypic score, and polynomial and binary transformation of the scores, were individually used as the input data. A major QTL peak was observed on Pv02 in the ADP, while a major QTL was observed on Pv01 with the MDP. These regions were associated with clusters of TIR-NB_ARC-LRR (TNL) gene models encoding proteins similar to known disease resistance genes. Other QTL, unique to each panel, were mapped within or adjacent to a gene model or cluster of related genes associated with disease resistance. This is a first case study that provides evidence for major as well as minor genes involved in resistance to R. solani in common bean. This information will be useful to integrate more durable root rot resistance in common bean breeding programs and to study the genetic mechanisms associated with root diseases in this important societal legume.

11.
Front Plant Sci ; 8: 1165, 2017.
Article in English | MEDLINE | ID: mdl-28713416

ABSTRACT

Ascochyta blight (AB) of pulse crops (chickpea, field pea, and lentils) causes yield loss in Montana, where 1.2 million acres was planted to pulses in 2016. Pyraclostrobin and azoxystrobin, quinone outside inhibitor (QoI) fungicides, have been the choice of farmers for the management of AB in pulses. However, a G143A mutation in the cytochrome b gene has been reported to confer resistance to QoI fungicides. A total of 990 isolates of AB-causing fungi were isolated and screened for QoI resistance. Out of these, 10% were isolated from chickpea, 81% were isolated from field peas, and 9% isolated from lentil. These were from a survey of grower's fields and seed lots (chickpea = 17, field pea = 131, and lentil = 21) from 23 counties in Montana sent to the Regional Pulse Crop Diagnostic Laboratory, Bozeman, MT, United States for testing. Fungicide-resistant Didymella rabiei isolates were found in one chickpea seed lot each sent from Daniels, McCone and Valley Counties, MT, from seed produced in 2015 and 2016. Multiple alignment analysis of amino acid sequences showed a missense mutation that replaced the codon for amino acid 143 from GGT to GCT, introducing an amino acid change from glycine to alanine (G143A), which is reported to be associated with QoI resistance. Under greenhouse conditions, disease severity was significantly higher on pyraclostrobin-treated chickpea plants inoculated with QoI-resistant isolates of D. rabiei than sensitive isolates (p-value = 0.001). This indicates that where resistant isolates are located, fungicide failures may be observed in the field. D. rabiei-specific polymerase chain reaction primer sets and hydrolysis probes were developed to efficiently discriminate QoI- sensitive and - resistant isolates.

12.
Plant Dis ; 100(6): 1118-1124, 2016 Jun.
Article in English | MEDLINE | ID: mdl-30682275

ABSTRACT

Pink rot is an important disease of potato with worldwide distribution. Severe yield and quality losses have been reported at harvest and in postharvest storage. Under conditions favoring disease development, pink rot severity can continue to increase from the field to storage and from storage to transit, causing further losses. Prediction of pink rot disease development in storage has great potential for growers to intervene at an earlier stage of disease development to minimize economic losses. Pink rot disease is estimated as percent rot confined on the interval (0 or 1, corresponding to 0% as no disease and 100% as maximum disease). In this study, beta regression is considered over the traditional ordinary least squares regression (linear regression) for fitting continuous response variables bounded on the unit interval (0,1). This method is considered a good alternative to data transformation and analysis by linear regression. The percentages of incidence of pink rot in tubers at harvest, yield, and days after harvest were used as study covariates to predict pink rot development from 32 to 78 days postharvest. Results demonstrate that the interaction between percentage of pink rot at harvest and yield is a significant predictor (P < 0.0001) of the beta regression model. A linear regression model was also designed to compare the results with the proposed beta regression model. Linear predictors observed in diagnostic plots with linear regression model was found to not be constant and an adjusted R2 (0.49) was obtained. The pseudo R2 (0.56) and constant variance for this study suggests that the beta regression function is adequate for predicting the development of pink rot during storage. The use of the beta prediction model could help growers decide whether to apply a fungicide to tubers going into storage or to market their crop before significant storage losses are incurred.

13.
Plant Dis ; 100(10): 1965-1978, 2016 Oct.
Article in English | MEDLINE | ID: mdl-30683014

ABSTRACT

Pulse crops (annual grain legumes such as field pea, lentil, dry bean, and chickpea) have become an important component of the cropping system in the northern Great Plains of North America over the last three decades. In many areas, the intensity of damping-off, seedling blight, root rot, and premature ripening of pulse crops is increasing, resulting in reduction in stand establishment and yield. This review provides a brief description of the important pathogens that make up the root rot complex and summarizes root rot management on pulses in the region. Initially, several specific Fusarium spp., a range of Pythium spp., and Rhizoctonia solani were identified as important components of the root rot disease complex. Molecular approaches have recently been used to identify the importance of Aphanomyces euteiches on pulses, and to demonstrate that year-to-year changes in precipitation and temperature have an important effect on pathogen prevalence. Progress has been made on management of root rot, but more IPM tools are required to provide effective disease management. Seed-treatment fungicides can reduce damping-off and seedling blight for many of the pathogens in this disease complex, but complex cocktails of active ingredients are required to protect seedlings from the pathogen complex present in most commercial fields. Partial resistance against many of the pathogens in the complex has been identified, but is not yet available in commercial cultivars. Cultural practices, especially diversified cropping rotations and early, shallow seeding, have been shown to have an important role in root rot management. Biocontrol agents may also have potential over the long term. Improved methods being developed to identify and quantify the pathogen inoculum in individual fields may help producers avoid high-risk fields and select IPM packages that enhance yield stability.

14.
Plant Dis ; 100(1): 200-206, 2016 Jan.
Article in English | MEDLINE | ID: mdl-30688582

ABSTRACT

Foliar fungicides continue to be the primary means of early blight management on potato in the United States. Both premium-priced, single-site mode-of-action "specialty" fungicides and standard protectant multisite fungicides are applied, either alone or incorporated into fungicide rotation programs to combat early blight. Individual participant data meta-analysis was conducted to compare overall fungicide efficacy against early blight on potato, quantify tuber yields, and identify the most efficacious timing for fungicide applications. In this study, the specialty fungicide-based applications were compared against the standard fungicides chlorothalonil and mancozeb applied alone. Type 3 fixed effects indicated that there was a significant difference (P < 0.0001) in overall efficacy and yield among the treatments applied to manage early blight in potato. There was a significant difference (P < 0.0001) among treatments in early blight development during the growing season. Applications incorporating specialty fungicides, when compared with standard fungicides, significantly affected disease severity from vegetative growth initiation (P = 0.0139) to tuber maturation (P = 0.0009). Results demonstrate that the higher cost, specialty-fungicide-based applications were most effective for early blight management in North Dakota and Minnesota.

15.
Plant Dis ; 99(4): 474-481, 2015 Apr.
Article in English | MEDLINE | ID: mdl-30699543

ABSTRACT

Although Phytophthora nicotianae is not normally considered to be an important pathogen of potato (Solanum tuberosum), intermittent outbreaks of a foliar blight and tuber rot have been reported in the United States over the past 75 years. Due to the sporadic nature of these reports, little is known about the etiology of the disease in potato. However, foliar disease and tuber rots caused by this pathogen are usually centered near areas of standing water in the field and along pivot tracks. Moreover, soil particles adhering to the foliage of infected potato plants suggest that water splash is involved in P. nicotianae dissemination and infection. Soil infestation and water splash dissemination studies were conducted under greenhouse conditions to examine the role that zoospores of P. nicotianae may play in disease on potato. In the soil infestation study, inoculum of P. nicotianae was added to soil at four rates (0.0, 1.0 × 103, 5.0 × 103, and 4.0 × 104 zoospores/ml) and three timings (at planting and 7 and 14 days after planting). Direct infection of aboveground plant tissues was achieved via splash dissemination of inoculum onto potato foliage. All soil infestations significantly reduced emergence, with the exception of the 1.0 × 103 zoospores/ml treatment, and no plants emerged from soil infested with 4.0 ×104 zoospores/ml. Significant reductions in stem number were observed with infestations of 1.0 × 103 and 5.0 × 103 zoospores/ml at planting and 5.0 × 103 zoospores/ml at 7 days after planting. Progeny tuber infections were confirmed with infestations at 1.0 × 103 zoospores/ml at planting and 7 days after planting. Lesions developed on leaflets, petioles, leaf axils, and stems in all water splash dissemination treatments within 3 days of inoculation, significant differences in the lesion number were observed, and disease severity generally was proportional to inoculum concentration. Relative area under the disease progress curve of the 5.0 × 103 and 4.0 × 104 zoospores/ml splash dissemination treatments was significantly greater than the 0.0 zoospore and 1.0 × 103 zoospores/ml treatments. Progeny tuber infections were observed with all water splash dissemination treatments but infection rates did not differ significantly among treatments. These studies confirm the hypothesis that water splash dissemination of P. nicotianae inoculum is a likely means by which infections of this pathogen are initiated in potato.

16.
Plant Dis ; 96(5): 693-704, 2012 May.
Article in English | MEDLINE | ID: mdl-30727528

ABSTRACT

A study was undertaken in 2008 and 2009 to examine potato (Solanum tuberosum) cultivar susceptibility, the potential of other host species to act as sources of inoculum for potato infections, and other aspects of potato-Phytophthora nicotianae interactions. Twelve isolates of P. nicotianae collected from five leaf, one petiole, and six tuber infections of potato from five states, as well as isolates from a variety of other host species, were evaluated for ability to cause tuber rot of potato via inoculation studies. Additionally, the susceptibility of 27 potato cultivars commonly grown in the United States to tuber infection by P. nicotianae was determined. Eighty-three percent of the isolates recovered from potato were highly aggressive, infecting tubers at nearly four times greater incidences than isolates originating from nonpotato hosts. With the exception of two tobacco isolates, zoospores of all isolates recovered from nonpotato hosts were able to infect potato tubers. Russet cultivars were significantly less susceptible to P. nicotianae than red and white cultivars in 2008, and red cultivars in 2009. Umatilla Russet was the most resistant cultivar in both years, whereas Red Norland and Dakota Rose were the most susceptible in both years. Results of a survey for P. nicotianae conducted in four states from 2008 through 2010 confirmed previous observations of naturally occurring infections of potato in Missouri, Nebraska, and Texas, as well as infections of potato in Michigan (documented for the first time). All isolates recovered in the survey were sensitive to mefenoxam (EC50 < 1.0 µg/ml).

17.
Plant Dis ; 95(6): 691-696, 2011 Jun.
Article in English | MEDLINE | ID: mdl-30731895

ABSTRACT

A 2-year field and laboratory experiment was initiated to study the competitive parasitic fitness of mefenoxam-resistant (50% effective concentration [EC50] > 100 µg ml-1) and mefenoxam-sensitive (EC50 = 0.07 µg ml-1) isolates of Phytophthora erythroseptica with equal aggressiveness. The competitive ability of the mefenoxam-resistant and -sensitive isolates was tested under no selection pressure (nonfungicide treated) as well as under the influence of mefenoxam and non-mefenoxam (phosphorous acid) fungicides. P. erythroseptica isolates were combined in four ratios of mefenoxam-resistant (R) to mefenoxam-susceptible (S) (0R:0S, 1R:1S, 3R:1S, and 1R:3S) and subsequently infested into the soil at the time of planting. In-furrow mefenoxam applications were applied to the soil immediately following infestation with P. erythroseptica. Phosphorous acid was applied at tuber initiation and 14 days after tuber initiation. Noninfested, nonfungicide-treated plots served as controls. P. erythroseptica isolates recovered from field-infected pink rot tubers at harvest and 3 to 4 weeks after harvest were tested for mefenoxam sensitivity in vitro. In vivo studies were performed by challenge inoculating a zoospore suspension in the four ratios described above onto potato tubers harvested from nontreated, phosphorous acid-treated, or mefenoxam-treated field plots. These field plots were not infested with P. erythroseptica at planting. Results from both field and in vivo studies demonstrate that mefenoxam-resistant isolates of P. erythroseptica are as fit as sensitive isolates in the absence of selection pressure or in the presence of a phosphorous acid fungicide treatment. Under mefenoxam selection pressure, mefenoxam-resistant P. erythroseptica isolates were more parasitically fit than -sensitive isolates. These studies suggest the lack of an apparent fitness penalty in mefenoxam-resistant P. erythroseptica populations under field conditions and that these isolates could be stable in most agroecological systems. Based on these results, mefenoxam-based fungicides are no longer recommended for the management of pink rot once mefenoxam-resistant P. erythroseptica populations are detected in a specific field.

18.
Plant Dis ; 95(8): 997-1006, 2011 Aug.
Article in English | MEDLINE | ID: mdl-30732101

ABSTRACT

Experiments were conducted to examine the effectiveness of rate and method of phosphorous acid application for controlling pink rot of potato (Solanum tuberosum) caused by Phytophthora erythroseptica. Replicated small-plot and replicated split commercial field trials were established in commercial production fields in Minnesota from 2006 to 2009. Fungicides were applied in-furrow at planting, or as one, two, or three foliar applications via ground sprayer, irrigation system (chemigation), or fixed-wing aircraft. Phosphorous acid efficacy was compared to mefenoxam, the fungicide commonly utilized to manage pink rot, either by determining natural infections in the field or by inoculating eyes of harvested tubers using a mefenoxam-sensitive and -resistant isolate of P. erythroseptica via postharvest challenge inoculation. In replicated small plot trials, both in-furrow and two foliar applications of mefenoxam controlled tuber rot in the field, and significantly controlled tuber rot in storage. Phosphorous acid also reduced tuber rot in the field when applied two or three times to the foliage. Although phosphorous acid was ineffective when applied in-furrow, one, two, and three foliar applications and a postharvest application of phosphorous acid controlled mefenoxam-sensitive and -resistant isolates of P. erythroseptica during storage for 187 days, while mefenoxam failed to control the resistant isolate. In replicated split commercial field trials, two aerial applications of phosphorous acid were as effective as three applications in reducing pink rot incidence in tubers inoculated postharvest. Three aerial applications were as effective as three chemigation applications in replicated split commercial field trials in 2008, but provided significantly greater protection than chemigation in 2009.

19.
Plant Dis ; 93(6): 649-659, 2009 Jun.
Article in English | MEDLINE | ID: mdl-30764404

ABSTRACT

Clavibacter michiganensis subsp. sepedonicus, causal agent of bacterial ring rot (BRR) of potato (Solanum tuberosum), is a globally important quarantine pathogen that is managed in North America using zero tolerance regulations in the certified seed industry. C. michiganensis subsp. sepedonicus is well documented to cause symptomless infections in potato, contributing to its persistence in certified seed stocks. Reliable laboratory methods to detect symptomless infections with a high degree of sensitivity could assist in the reduction of inoculum in certified seed potato stocks. A real-time polymerase chain reaction (PCR) assay was developed using the cellulase A (CelA) gene sequence as the basis for primer design. CelA primers were specific to C. michiganensis subsp. sepedonicus grown in vitro and did not detect any other coryneform bacteria or potato pathogenic bacteria but did detect 69 strains of C. michiganensis subsp. sepedonicus. The CelA real-time PCR assay was more sensitive than immunofluorescence (IFA) and Cms50/72a PCR assays in detecting C. michiganensis subsp. sepedonicus in infected potato tuber cores blended with healthy tuber cores in simulated seed lot contamination experiments. CelA primers detected nonmucoid and mucoid strains with equivalent sensitivity. In naturally infected seed lots, CelA PCR primers also were more sensitive in detecting symptomless infections of C. michiganensis subsp. sepedonicus in seed tubers prior to planting compared to Cms50/72a PCR primers, IFA, and enzyme-linked immunosorbent assay. A real-time PCR format using the newly developed CelA primers proved to be a very robust detection tool for C. michiganensis subsp. sepedonicus with the added advantage of detecting only virulent strains of the ring rot bacterium.

20.
Arch Virol ; 153(3): 517-25, 2008.
Article in English | MEDLINE | ID: mdl-18193154

ABSTRACT

This report describes the characterization by whole-genome sequencing of four PVY isolates with unique combinations of molecular and symptomatic characteristics. Three of these four isolates were of type PVY(N:O) (ID-1, OR-1, PN10A), including one of "type B", which contains an extra recombination event in the 5'UTR/P1 cistron; the other (NE-11) represents a novel PVY molecular genotype, previously misclassified as a PVY(NA-NTN) isolate. The full genome sequence of this latter isolate is unique inasmuch as it is nearly identical to that of PVY(N) isolates for the first 2,000 nucleotides (nts), after which it very strongly resembles PVY(NA-NTN) isolates for the next 600 nts. For the final 7,000 nts of its genome, NE-11 shares intermediate identity with these other two previously reported classes of PVY(N) genomes, except for a portion of the capsid protein region in which it resembles neither. Recombination in each of the four isolates was verified by a suite of recombination detection programs. PN10A represents the first complete sequence of a PVY strain variant of the class reported as PVY(N)-W (or PVY(N:O)) type B. Specific PCR assays for two unique regions of NE-11 are presented that will allow the identification of this strain variant by other researchers.


Subject(s)
Potyvirus/classification , Potyvirus/genetics , Recombination, Genetic , Base Sequence , Genome, Viral , Molecular Sequence Data , Phylogeny , Plant Diseases/virology , Potyvirus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...