Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Molecules ; 29(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38792223

ABSTRACT

We present a Raman spectroscopy study of the vibrational properties of free-base meso-tetra(4-pyridyl) porphyrin polycrystals under various temperature and hydrostatic pressure conditions. The combination of experimental results and Density Functional Theory (DFT) calculations allows us to assign most of the observed Raman bands. The modifications in the Raman spectra when excited with 488 nm and 532 nm laser lights indicate that a resonance effect in the Qy band is taking place. The pressure-dependent results show that the resonance conditions change with increasing pressure, probably due to the shift of the electronic transitions. The temperature-dependent results show that the relative intensities of the Raman modes change at low temperatures, while no frequency shifts are observed. The experimental and theoretical analysis presented here suggest that these molecules are well represented by the C2v point symmetry group.

2.
J Bone Miner Metab ; 41(6): 760-771, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37673837

ABSTRACT

INTRODUCTION: Bisphosphonate (BF) therapy is strongly related to the occurrence of medication-related osteonecrosis of the jaw (ONJ). However, no previous study has evaluated if there are sex-related differences on the ONJ establishment together with bone biomechanical alterations, and if they could have a synergy with the ZA treatment. MATERIALS AND METHODS: This study aimed to analyze the physicochemical properties of mineralized tissues in a zoledronate (ZA)-related osteonecrosis mouse model, by a 2 × 2-factorial design, considering sex (female/male) and treatment (ZA/Saline) factors (n = 8/group). After three ZA (1.0 mg/kg) or saline administrations (days 0, 7, 14), the lower left second molar was extracted (day 42). Further ZA administration (day 49) and euthanasia (day 70) were conducted. After confirmation of ZA-induced jaw necrosis (histologic and microtomographic analysis), spectroscopic and mechanical parameters were assessed. RESULTS: ZA-treated groups presented lower bone density due to impaired healing of tooth extraction socket. Sex-related alterations were also observed, with lower bone density in females. Regarding biomechanical parameters, sex and treatment exerted independent influences. ZA, although decreasing flexural modulus and yield stress, increases stiffness mainly due to a higher bone volume. Females show less resistance to higher loads compared to males (considering dimension-independent parameters). Additionally, ZA increases crystallinity in bone and dental structure (p < 0.05). In summary, although strongly related to osteonecrosis occurrence, ZA modifies bone and dental mineral matrix, improving bone mechanical properties. CONCLUSION: Despite sex-dependent differences in bone biomechanics and density, osteonecrosis was established with no sex influence. No synergistic association between sex and treatment factors was observed in this study.


Subject(s)
Bisphosphonate-Associated Osteonecrosis of the Jaw , Bone Density Conservation Agents , Mice , Animals , Male , Female , Zoledronic Acid/pharmacology , Bisphosphonate-Associated Osteonecrosis of the Jaw/pathology , Diphosphonates/adverse effects , Tooth Socket , Bone Density , Bone Density Conservation Agents/adverse effects
3.
ACS Appl Mater Interfaces ; 14(38): 43597-43611, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36103380

ABSTRACT

A sensor device based on doped-carbon quantum dots is proposed herein for detection of nitrite in meat products by fluorescence quenching. For the sensing platform, carbon quantum dots doped with boron and functionalized with nitrogen (B,N-Cdot) were synthesized with an excellent 44.3% quantum yield via a one-step hydrothermal route using citric acid, boric acid, and branched polyethylenimine as carbon, boron, and nitrogen sources, respectively. After investigation of their chemical structure and fluorescent properties, the B,N-Cdot at aqueous suspensions showed high selectivity for NO2- in a linear range from 20 to 50 mmol L-1 under optimum conditions at pH 7.4 and a 340 nm excitation. Furthermore, the prepared B,N-Cdots successfully detected NO2- in a real meat sample with recovery of 91.4-104% within the analyzed range. In this manner, a B,N-Cdot/PVA nanocomposite film with blue emission under excitation at 360 nm was prepared, and a first assay detection of NO2- in meat products was tested using a smartphone application. The potential application of the newly developed sensing device containing a highly fluorescent probe should aid in the development of a rapid and inexpensive strategy for NO2- detection.


Subject(s)
Nanocomposites , Quantum Dots , Boron/chemistry , Carbon/chemistry , Citric Acid/chemistry , Fluorescent Dyes/chemistry , Meat , Nitrites , Nitrogen/chemistry , Nitrogen Dioxide , Polyethyleneimine , Quantum Dots/chemistry , Suspensions
7.
Funct Plant Biol ; 48(11): 1113-1123, 2021 10.
Article in English | MEDLINE | ID: mdl-34585660

ABSTRACT

Silver nanoparticle (AgNPs) toxicity is related to nanoparticle interaction with the cell wall of microorganisms and plants. This interaction alters cell wall conformation with increased reactive oxygen species (ROS) in the cell. With the increase of ROS in the cell, the dissolution of zero silver (Ag0) to ionic silver (Ag+) occurs, which is a strong oxidant agent to the cellular wall. AgNP interaction was evaluated by transmission electron microscopy (TEM) on Lactuca sativa roots, and the mechanism of passage through the outer cell wall (OCW) was also proposed. The results suggest that Ag+ binds to the hydroxyls (OH) present in the cellulose structure, thus causing the breakdown of the hydrogen bonds. Changes in cell wall structure facilitate the passage of AgNPs, reaching the plasma membrane. According to the literature, silver nanoparticles with an average diameter of 15nm are transported across the membrane into the cells by caveolines. This work describes the interaction between AgNPs and the cell wall and proposes a transport model through the outer cell wall.


Subject(s)
Asteraceae , Metal Nanoparticles , Cell Wall , Lactuca , Metal Nanoparticles/toxicity , Silver
8.
PLoS One ; 16(3): e0247497, 2021.
Article in English | MEDLINE | ID: mdl-33730028

ABSTRACT

Fossil freshwater carideans are very rare worldwide. Here, we present new taxonomic remarks about Beurlenia araripensis from the Early Cretaceous laminated limestones of the Crato Formation, Araripe Basin, northeastern Brazil. We analyzed five fossil samples, testing the morphological variations such as, rostrum with 5 to 14 supra-rostral spines and 2 to 3 sub-rostral spines, which appears as serrate for Caridea. This variation demonstrates a morphologic plasticity also seen in extant species of the group, such as those of the genera Macrobrachium and Palaemon.


Subject(s)
Adaptation, Physiological , Decapoda/anatomy & histology , Decapoda/physiology , Fossils/anatomy & histology , Palaemonidae/anatomy & histology , Palaemonidae/physiology , Spine/anatomy & histology , Animals , Brazil , Calcium Carbonate , Decapoda/classification , Fresh Water , Microscopy/methods , Palaemonidae/classification
9.
Phys Rev Lett ; 125(10): 105501, 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32955330

ABSTRACT

Isolated linear carbon chains (LCCs) encapsulated by multiwalled carbon nanotubes are studied under hydrostatic pressure (P) via resonance Raman scattering. The LCCs' spectroscopic signature C band around 1850 cm^{-1} softens linearly with increasing P. A simple anharmonic force-constant model not only describes such softening but also shows that the LCCs' Young's modulus (E), Grüneisen parameter (γ), and strain (ϵ) follow universal P^{-1} and P^{2} laws, respectively. In particular, γ also presents a unified behavior for all LCCs. To the best of our knowledge, these are the first results reported on such isolated systems and the first work to explore universal P-dependent responses for LCCs' E, ϵ, and γ.

10.
ACS Omega ; 5(1): 386-393, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31956786

ABSTRACT

Silver nanoparticles (AgNPs) have a large number of applications in technology and physical and biological sciences. These nanomaterials can be synthesized by chemical and biological methods. The biological synthesis using fungi represents a green approach for nanomaterial production that has the advantage of biocompatibility. This work studies silver nanoparticles (AgNPs) produced by fungi Rhodotorula glutinis and Rhodotorula mucilaginosa found in ordinary soil of the Universidade Federal do Ceará campus (Brazil). The biosynthesized AgNPs have a protein-capping layer involving a metallic Ag core. The focus of this paper is to investigate the size and structure of the capping layer, how it interacts with the Ag core, and how sensitive the system (core + protein) is to visible light illumination. For this, we employed SEM, AFM, photoluminescence spectroscopy, SERS, and dark-field spectroscopy. The AgNPs were isolated, and SEM measurements showed the average size diameter between 58 nm for R. glutinis and 30 nm for R. mucilaginosa. These values are in agreement with the AFM measurements, which also provided the average size diameter of 85 nm for R. glutinis and 56 nm for R. mucilaginosa as well as additional information about the average size of the protein-capping layers, whose found values were 24 and 21 nm for R. mucilaginosa and R. glutinis nanoparticles, respectively. The protein-capping layer structure seemed to be easily disturbed, and the SERS spectra were unstable. It was possible to identify Raman peaks that might be related to α-helix, ß-sheet, and protein mixed structures. Finally, dark-field microscopy showed that the silver cores are very stable, but some are affected by the laser energy due to heating or melting.

11.
PeerJ ; 7: e6323, 2019.
Article in English | MEDLINE | ID: mdl-30783565

ABSTRACT

The Ipubi and Romualdo Formations are Cretaceous units of the Araripe Basin (Santana Group). The first and most ancient was deposited in a lake environment, and some fossils were preserved in shales deposited under blackish conditions. The second was deposited in a marine environment, preserving a rich paleontological content in calcareous concretions. Considering that these two environments preserved their fossils under different processes, in this work we investigated the chemical composition of two fossilized specimens, one from each of the studied stratigraphic units, and compared them using vibrational spectroscopy techniques (Raman and IR), X-ray diffraction and large-field energy-dispersive X-ray spectroscopy (EDS) mappings. Calcite was observed as the dominant phase and carbon was observed in the fossils as a byproduct of the decomposition. The preservation of hydroxide calcium phosphate (Ca10(PO4)6(OH)2, hydroxyapatite) was observed in both fossils. In addition, it was observed that there was a smaller amount of pyrite (pyritization) in the Romualdo Formation sample than in the Ipubi one. Large-field EDS measurements showed the major presence of the chemical elements calcium, oxygen, iron, aluminum and fluoride in the Ipubi fossil, indicating a greater influence of inorganic processes in its fossilization. Our results also suggest that the Romualdo Formation fossilization process involved the substitution of the hydroxyl group by fluorine, providing durability to the fossils.

SELECTION OF CITATIONS
SEARCH DETAIL