Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Eur J Pharm Sci ; 165: 105943, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34260893

ABSTRACT

Breast cancer is the most common cancers among women and is one of the main causes of morbidity and mortality in this population. In this study, we aimed to conjugate doxorubicin (DOX), a drug widely used in cancer chemotherapy, and folic acid (FA), a ligand targeted for cancer therapy, to lipid-core nanocapsules (LNC), and evaluate the efficacy of the nanoformulation against triple-negative breast cancer (TNBC) MDA-MB-231 cells that overexpress folate receptors (FRs). We performed cell viability assays, quantitative real-time PCR (qRT-PCR), cell migration assay, and clonogenic assay, as well as measured the levels of nitric oxide (NO) generated and cellular uptake. The results showed that the nanoformulation reduced cell viability. The results of qRT-PCR analysis revealed that the nanoformulation induced apoptosis of MDA-MB-231 cells. The mRNA expression levels of Cat and MnSod were increased when the nanoformulation was compared to the doxorubicin solution. Furthermore, the nanoformulation significantly decreased the migration of breast cancer cells in vitro and inhibited colony formation. Additionally, the expression of iNOS in MDA-MB-231 cells was higher when the nanoformulation was used compared to the doxorubicin solution. Cellular uptake was observed after incubating the MDA-MB-231 cells with the fluorescent-labeled nanoformulation. In conclusion, we developed a promising nanoformulation for the treatment of TNBC. Further studies are necessary to demonstrate the in vivo efficacy of this formulation.


Subject(s)
Nanocapsules , Triple Negative Breast Neoplasms , Apoptosis , Cell Line, Tumor , Doxorubicin/therapeutic use , Folic Acid , Humans , Nanocapsules/therapeutic use , Triple Negative Breast Neoplasms/drug therapy
2.
Reprod Toxicol ; 103: 64-70, 2021 08.
Article in English | MEDLINE | ID: mdl-34098044

ABSTRACT

The lectin of Bauhinia forficata (nBfL) is a protein able to bind reversibly to N-acetylgalactosamine, performing several functions and one of them is the antiproliferative activity in tumor cells, but its effects have not yet been evaluated in female gametes. The objective of the present study was to determine the additional effect of B. forficata recombinants lectins in the medium of maturation in vitro of bovine oocytes in expression of genes related to oxidative stress pathways. To get the proteins, the gene for this recombinant lectin (rBfL) and its truncated isoform (rtBfL) were cloned and expressed in Escherichia coli (E.coli). The oocytes obtained through follicular puncture were incubated in IVM medium for 24 h containing concentrations of 10 µg/mL, 50 µg/mL and 100 µg/mL of nBfL, rBfL and rtBfL, and a no treated group as a control. In the groups treated with the concentration of 100 µg / mL, the gene expression of genes involved in oxidative stress SOD2, CAT, GPX-1, GSR, NOS2 and apoptosis BAX, CASP3 were evaluated. The rtBfL increased the expression of the SOD2, GSR and NOS2 genes and all the tested lectins increased the expression of the CASP3 gene compared to the control group. These findings indicate that the tested concentrations of the B. forficata recombinants lectins probably influence the expression of oxidative stress genes and increase the expression of the apoptotic gene CASP3 during in vitro maturation of bovine oocytes.


Subject(s)
Bauhinia , Lectins , Oxidative Stress/physiology , Animals , Antioxidants , Apoptosis , Blastocyst , Caspase 3/metabolism , Cattle , Dietary Supplements , Embryonic Development/drug effects , Female , Gene Expression , Glutathione Peroxidase , In Vitro Oocyte Maturation Techniques , Oocytes , Glutathione Peroxidase GPX1
3.
Photodiagnosis Photodyn Ther ; 31: 101942, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32758669

ABSTRACT

Tetra-cationic porphyrins with peripheral Pt (II) -bipyridyl complexes demonstrated a potential as photosensitizers to be used in photodynamic therapy (PDT). First-line transition metals, such as zinc (II), copper (II) and nickel (II), can be incorporated into the porphyrin nucleus, making this molecule more selective and more effective for this therapy in combating to tumor cells, such as metastatic melanoma. We characterized these derivatives to verify the improvement in selectivity of platinum (II) 4-PtTPyP porphyrins. Receptors such as LDL and endothelin (ERT-B) were investigated, as well as the binding affinity of two antioxidants: catalase model enzymes and superoxide dismutase. Human serum albumin (SAH) HSA binding properties have been verified. In addition, we evaluated the antitumor action of such metalloporphyrins in an in vitro cell viability. Our results demonstrated that porphyrins have significant antitumor potential when exposed to white light conditions. The affinity for the LDL receptor was better when compared to platinum porphyrin 4-PtTPyP without addition of metals and the affinity for the endothelin receptor was higher than the control used in this study. Still, the interaction with the HSA showed the possibility of this connection taking photosensitizers to places of interest, such as the delivery of medicines.


Subject(s)
Melanoma , Photochemotherapy , Porphyrins , Antioxidants/pharmacology , Copper , Humans , Melanoma/drug therapy , Nickel , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Platinum , Porphyrins/pharmacology , Zinc
4.
Toxicol In Vitro ; 62: 104678, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31629896

ABSTRACT

The development of new bioactive molecules based on the molecular hybridization has been widely explored. In line with this, reliable tests should be employed to give information about the toxicology of these new molecules. In this sense, the use of in vitro tests is a valuable tool, especially the in vitro maturation of oocytes (IVM), which is an efficient resource to discover the potential toxicity of synthetic molecules. Thus, the aim of the present study was to evaluate the toxicological effects of the selenium-containing indolyl compound 3-(4-Chlorophenylselanyl)-1-methyl-1H-indole (CMI), on different quality parameters of bovine oocytes through the IVM. Different concentrations of the CMI compound (0, 25, 50, 100, 200 µM) were supplemented during the in vitro maturation process. After, the oocyte maturation rate, glutathione (GSH) levels, reactive oxygen species (ROS) levels, membrane, and mitochondrial integrity were evaluated. The results showed that the lowest concentration of CMI induced the highest GSH production (P < 0.05), an important marker of cytoplasmic quality and maturation. All treatments increased ROS production in relation to non-supplementation (P < 0.05). In addition, oocyte maturation was reduced only with the highest concentration of CMI (P < 0.05). Supplementation with CMI did not impact mitochondrial activity, integrity and cell membrane. To our knowledge, this is the first study that evaluates CMI on the oocyte in vitro maturation process. Importantly, our results did not find any toxic effect of CMI on bovine oocytes. CMI was efficient for cytoplasmic maturation by promoting an increase in the intracellular levels of glutathione.


Subject(s)
In Vitro Oocyte Maturation Techniques , Indoles/toxicity , Oocytes/drug effects , Selenium Compounds/toxicity , Animals , Cattle , Cell Survival/drug effects , Cells, Cultured , Female , Glutathione/metabolism , Oocytes/metabolism , Reactive Oxygen Species/metabolism
5.
Toxicol In Vitro ; 40: 214-222, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28130145

ABSTRACT

Toxicology studies have a pivotal role for selection of new nanosystems. As lipid-core nanocapsules (LNC) rise as a potential system not only for drug delivery but also for immunotherapy and gene therapy, the demand for models of toxic screening increases, and sperm arises as a promising model due to the easiness to evaluate its viability parameters. LNCs were coated with chitosan, chitosan-coated lipid-core nanocapsules (LNC-CS), in order to modify the nanocapsule surface. We evaluated the toxicity of LNC and LNC-CS after incubation with bovine sperm in different concentrations (2.5%, 5%, 10%, 20%, 40% and 80%) (v/v) and periods of exposure (0h and 1h). CASA parameters and flow cytometry assays were performed to assess LNC and LNC-CS effects. The results corroborated with previous studies indicating that there is no toxicity from LNCs and LNC-CS below 40% (v/v) concentration.


Subject(s)
Chitosan/toxicity , Lipids/toxicity , Nanocapsules/toxicity , Spermatozoa/drug effects , Animals , Cattle , Chitosan/chemistry , DNA Damage , Lipid Peroxidation/drug effects , Lipids/chemistry , Male , Membrane Potential, Mitochondrial/drug effects , Nanocapsules/chemistry , Sperm Motility/drug effects , Spermatozoa/metabolism , Spermatozoa/physiology
SELECTION OF CITATIONS
SEARCH DETAIL