Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 25(12): 105524, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36437876

ABSTRACT

SOX10 is a key regulator of melanoma progression and promotes a melanocytic/differentiated state. Here we identified melanoma cell lines lacking SOX10 expression which retain their in vivo growth capabilities. More importantly, we find that SOX10 can regulate T-cell infiltration in melanoma while also decreasing common cancer stem cell (CSC) properties. We show that SOX10 regulates CEACAM1, a surface protein with immunomodulatory properties. SOX10 directly binds to a distal CEACAM1 promoter region approximately 3-4kbps from the CEACAM1 transcriptional start site. Furthermore, we show that a SOX10-CEACAM1 axis can suppress CD8+ T-cell infiltration as well as reduce CSC pool within tumors, leading to reduced tumor growth. Overall, these results identify SOX10 as a direct regulator of CEACAM1, and uncover both a pro- and anti-tumorigenic roles for SOX10 in melanoma.

2.
Breast Cancer Res ; 23(1): 107, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34809697

ABSTRACT

BACKGROUND: Breast cancer is a highly heterogeneous disease with multiple drivers and complex regulatory networks. Periostin (Postn) is a matricellular protein involved in a plethora of cancer types and other diseases. Postn has been shown to be involved in various processes of tumor development, such as angiogenesis, invasion, cell survival and metastasis. The expression of Postn in breast cancer cells has been correlated with a more aggressive phenotype. Despite extensive research, it remains unclear how epithelial cancer cells regulate Postn expression. METHODS: Using murine tumor models and human TMAs, we have assessed the proportion of tumor samples that have acquired Postn expression in tumor cells. Using biochemical approaches and tumor cell lines derived from Neu+ murine primary tumors, we have identified major regulators of Postn gene expression in breast cancer cell lines. RESULTS: Here, we show that, while the stromal compartment typically always expresses Postn, about 50% of breast tumors acquire Postn expression in the epithelial tumor cells. Furthermore, using an in vitro model, we show a cross-regulation between FGFR, TGFß and PI3K/AKT pathways to regulate Postn expression. In HER2-positive murine breast cancer cells, we found that basic FGF can repress Postn expression through a PKC-dependent pathway, while TGFß can induce Postn expression in a SMAD-independent manner. Postn induction following the removal of the FGF-suppressive signal is dependent on PI3K/AKT signaling. CONCLUSION: Overall, these results reveal a novel regulatory mechanism and shed light on how breast tumor cells acquire Postn expression. This complex regulation is likely to be cell type and cancer specific as well as have important therapeutic implications.


Subject(s)
Breast Neoplasms/genetics , Cell Adhesion Molecules/genetics , Gene Expression Regulation, Neoplastic , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Transforming Growth Factor beta/metabolism , Animals , Breast Neoplasms/metabolism , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Epithelial Cells/metabolism , Female , Fibroblast Growth Factors/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Receptor, ErbB-2/metabolism , Signal Transduction/drug effects , Transforming Growth Factor beta/pharmacology
4.
Breast Cancer Res ; 23(1): 55, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33985544

ABSTRACT

BACKGROUND: Approximately 5-10% of HER2-positive breast cancers can be defined by low expression of the Ste20-like kinase, SLK, and high expression of SOX10. Our lab has observed that genetic deletion of SLK results in the induction of Sox10 and significantly accelerates tumor initiation in a HER2-induced mammary tumor model. However, the mechanism responsible for the induction of SOX10 gene expression in this context remains unknown. METHODS: Using tumor-derived cell lines from MMTV-Neu mice lacking SLK and biochemical approaches, we have characterized the signaling mechanisms and relevant DNA elements driving Sox10 expression. RESULTS: Biochemical and genetic analyses of the SOX10 regulatory region in SLK-deficient mammary tumor cells show that Sox10 expression is dependent on a novel -7kb enhancer that harbors three SoxE binding sites. ChIP analyses demonstrate that Sox9 is bound to those elements in vivo. Our data show that AKT can directly phosphorylate Sox9 in vitro at serine 181 and that AKT inhibition blocks Sox9 phosphorylation and Sox10 expression in SLK(-/-) tumor cells. AKT-mediated Sox9 phosphorylation increases its transcriptional activity on the Sox10 -7kb enhancer without altering its DNA-binding activity. Interestingly, analysis of murine and human mammary tumors reveals a direct correlation between the levels of active phospho-Sox9 S181 and Sox10 expression. CONCLUSIONS: Our results have identified a novel Sox10 enhancer and validated Sox9 as a direct target for AKT. As Sox10 is a biomarker for triple-negative breast cancers (TNBC), these findings might have major implications in the targeting and treatment of those cancers.


Subject(s)
Breast Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor, ErbB-2/metabolism , SOX9 Transcription Factor/metabolism , SOXE Transcription Factors/genetics , Animals , Binding Sites , Breast Neoplasms/genetics , Cell Line, Tumor , Disease Models, Animal , Enhancer Elements, Genetic , Female , Humans , Mice , Mice, Transgenic , Phosphorylation , Protein Serine-Threonine Kinases/deficiency , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL