Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 677: 57-67, 2019 Aug 10.
Article in English | MEDLINE | ID: mdl-31051383

ABSTRACT

Sustainable agriculture encourages practices that present low risks to the environment and human health. To this end, zein (corn protein) can be used to develop nanocarrier systems capable of improving the physicochemical properties of biopesticides, reducing their possible toxicity. Neem oil extracted from the Azadirachta indica tree contains many active ingredients including azadirachtin, which is the active ingredient in multiple commercially available biopesticides. In this study, we describe the preparation and characterization of neem oil-loaded zein nanoparticles, together with evaluation of their toxicity towards nontarget organisms, using Allium cepa, soil nitrogen cycle microbiota, and Caenorhabditis elegans aiming to achieve the safer by design strategy. The spherical nanoparticles showed an average diameter of 278 ±â€¯61.5 nm and a good stability during the experiments. In the toxicity assays with A. cepa, the neem oil-loaded zein nanoparticles mitigated the increase in the DNA relative damage index caused by the neem oil. Molecular genetic analysis of the soil nitrogen cycle microbiota revealed that neem oil-loaded zein nanoparticles did not change the number of genes which encode nitrogen-fixing enzymes and denitrifying enzymes. In C. elegans, the neem oil-loaded zein nanoparticles had no toxic effect, while neem oil interfered with pharyngeal pumping and GST-4 protein expression. These neem oil-loaded zein nanoparticles showed promising results in the toxicity studies, opening perspectives for its use in crop protection in organic agriculture.


Subject(s)
Caenorhabditis elegans/drug effects , Glycerides/toxicity , Microbiota/drug effects , Onions/drug effects , Pesticides/toxicity , Terpenes/toxicity , Animals , Ecotoxicology , Nanoparticles/toxicity , Nitrogen Cycle , Soil Microbiology , Toxicity Tests
2.
Front Chem ; 6: 6, 2018.
Article in English | MEDLINE | ID: mdl-29473032

ABSTRACT

Zein, a protein extracted from maize, can be employed to easily produce nanoscale particles suitable for use as carrier systems. This review investigates the main methods for obtaining zein nanoparticles, as well as the problems and options available in the development of stable colloidal suspensions. Considerable gaps were identified in the literature concerning this topic, with studies being unclear about the factors that affect the stability of zein particles. In the vast majority of cases, no data are presented in relation to the stability of the formulations over time. It could be concluded that in order to produce a high quality system, detailed evaluation is required, considering factors including the zein concentration, pH, ionic strength, thermal treatment of the protein prior to preparation of the nanoparticles, strategies employing other materials as coatings, and the storage conditions. It is extremely important that these aspects should be considered during product development, prior to commercial-scale manufacture.

3.
Front Plant Sci ; 7: 1494, 2016.
Article in English | MEDLINE | ID: mdl-27790224

ABSTRACT

A major challenge of agriculture is to increase food production to meet the needs of the growing world population, without damaging the environment. In current agricultural practices, the control of pests is often accomplished by means of the excessive use of agrochemicals, which can result in environmental pollution and the development of resistant pests. In this context, biopesticides can offer a better alternative to synthetic pesticides, enabling safer control of pest populations. However, limitations of biopesticides, including short shelf life, photosensitivity, and volatilization, make it difficult to use them on a large scale. Here, we review the potential use of neem oil in crop protection, considering the gaps and obstacles associated with the development of sustainable agriculture in the not too distant future.

5.
Sci Rep ; 6: 19768, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26813942

ABSTRACT

The use of lower concentrations and fewer applications of herbicides is one of the prime objectives of the sustainable agriculture as it decreases the toxicity to non-targeted organisms and the risk of wider environmental contamination. In the present work, nanoparticles were developed for encapsulation of the herbicides imazapic and imazapyr. Alginate/chitosan and chitosan/tripolyphosphate nanoparticles were manufactured, and their physicochemical stability was evaluated. Determinations were made of the encapsulation efficiency and release kinetics, and the toxicity of the nanoparticles was evaluated using cytotoxicity and genotoxicity assays. The effects of herbicides and herbicide-loaded nanoparticles on soil microorganisms were studied in detail using real-time polymerase chain reactions. The nanoparticles showed an average size of 400 nm and remained stable during 30 days of storage at ambient temperature. Satisfactory encapsulation efficiencies of between 50 and 70% were achieved for both types of particles. Cytotoxicity assays showed that the encapsulated herbicides were less toxic, compared to the free compounds, and genotoxicity was decreased. Analyses of soil microbiota revealed changes in the bacteria of the soils exposed to the different treatments. Our study proves that encapsulation of the herbicides improved their mode of action and reduced their toxicity, indicating their suitability for use in future practical applications.


Subject(s)
Chitosan , Drug Carriers , Herbicides/administration & dosage , Imidazoles/administration & dosage , Nanoparticles , Niacin/analogs & derivatives , Nicotinic Acids/administration & dosage , Chitosan/chemistry , Comet Assay , Drug Carriers/chemistry , Drug Compounding , Drug Liberation , Drug Stability , Herbicides/chemistry , Herbicides/toxicity , Imidazoles/chemistry , Imidazoles/toxicity , Kinetics , Microbiota/drug effects , Nanoparticles/chemistry , Niacin/administration & dosage , Niacin/chemistry , Niacin/toxicity , Nicotinic Acids/chemistry , Nicotinic Acids/toxicity , Soil Microbiology
6.
Sci Rep ; 5: 13809, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26346969

ABSTRACT

Carbendazim (MBC) (methyl-2-benzimidazole carbamate) and tebuconazole (TBZ) ((RS)-1-(4-chlorophenyl)-4,4-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl)pentan-3-ol) are widely used in agriculture for the prevention and control of fungal diseases. Solid lipid nanoparticles and polymeric nanocapsules are carrier systems that offer advantages including changes in the release profiles of bioactive compounds and their transfer to the site of action, reduced losses due to leaching or degradation, and decreased toxicity in the environment and humans. The objective of this study was to prepare these two types of nanoparticle as carrier systems for a combination of TBZ and MBC, and then investigate the release profiles of the fungicides as well as the stabilities and cytotoxicities of the formulations. Both nanoparticle systems presented high association efficiency (>99%), indicating good interaction between the fungicides and the nanoparticles. The release profiles of MBC and TBZ were modified when the compounds were loaded in the nanoparticles, and cytotoxicity assays showed that encapsulation of the fungicides decreased their toxicity. These fungicide systems offer new options for the treatment and prevention of fungal diseases in plants.


Subject(s)
Agriculture , Benzimidazoles/administration & dosage , Carbamates/administration & dosage , Delayed-Action Preparations , Fungicides, Industrial/administration & dosage , Lipids , Nanoparticles , Polymers , Triazoles/administration & dosage , Chemistry, Pharmaceutical , Drug Stability , Models, Theoretical , Nanocapsules , Particle Size
7.
Int J Nanomedicine ; 10: 2391-401, 2015.
Article in English | MEDLINE | ID: mdl-25848258

ABSTRACT

In this work, poloxamer (PL)-based binary hydrogels, composed of PL 407 and PL 188, were studied with regard to the physicochemical aspects of sol-gel transition and pharmaceutical formulation issues such as dissolution-release profiles. In particular, we evaluated the cytotoxicity, genotoxicity, and in vivo pharmacological performance of PL 407 and PL 407-PL 188 hydrogels containing tramadol (TR) to analyze its potential treatment of acute pain. Drug-micelle interaction studies showed the formation of PL 407-PL 188 binary systems and the drug partitioning into the micelles. Characterization of the sol-gel transition phase showed an increase on enthalpy variation values that were induced by the presence of TR hydrochloride within the PL 407 or PL 407-PL 188 systems. Hydrogel dissolution occurred rapidly, with approximately 30%-45% of the gel dissolved, reaching ~80%-90% up to 24 hours. For in vitro release assays, formulations followed the diffusion Higuchi model and lower K(rel) values were observed for PL 407 (20%, K(rel) = 112.9 ± 10.6 µg · h(-1/2)) and its binary systems PL 407-PL 188 (25%-5% and 25%-10%, K(rel) =80.8 ± 6.1 and 103.4 ± 8.3 µg · h(-1/2), respectively) in relation to TR solution (K(rel) =417.9 ± 47.5 µg · h(-1/2), P<0.001). In addition, the reduced cytotoxicity (V79 fibroblasts and hepatocytes) and genotoxicity (V79 fibroblasts), as well as the prolonged analgesic effects (>72 hours) pointed to PL-based hydrogels as a potential treatment, by subcutaneous injection, for acute pain.


Subject(s)
Hydrogels , Micelles , Poloxamer , Tramadol , Animals , Cell Line , Cell Survival/drug effects , Cricetinae , Cricetulus , Hydrogels/chemistry , Hydrogels/toxicity , Kinetics , Phase Transition , Poloxamer/chemistry , Poloxamer/toxicity , Tramadol/chemistry , Tramadol/pharmacokinetics , Tramadol/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL