Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Clin Cancer Res ; 43(1): 27, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38254102

ABSTRACT

BACKGROUND: Peritoneal metastasis, which accounts for 85% of all epithelial ovarian carcinoma (EOC) metastases, is a multistep process that requires the establishment of adhesive interactions between cancer cells and the peritoneal membrane. Interrelations between EOC and the mesothelial stroma are critical to facilitate the metastatic process. No data is available so far on the impact of histone acetylation/deacetylation, a potentially relevant mechanism governing EOC metastasis, on mesothelial cells (MCs)-mediated adhesion. METHODS: Static adhesion and peritoneal clearance experiments were performed pretreating mesenchymal-like MCs and platinum-sensitive/resistant EOC cell lines with MS-275-a Histone deacetylase (HDAC)1-3 pharmacological inhibitor currently used in combination trials. Results were acquired by confocal microscopy and were analyzed with an automated Opera software. The role of HDAC1/2 was validated by genetic silencing. The role of α4-, α5-α1 Integrins and Fibronectin-1 was validated using specific monoclonal antibodies. Quantitative proteomic analysis was performed on primary MCs pretreated with MS-275. Decellularized matrices were generated from either MS-275-exposed or untreated cells to study Fibronectin-1 extracellular secretion. The effect of MS-275 on ß1 integrin activity was assessed using specific monoclonal antibodies. The role of Talin-1 in MCs/EOC adhesion was analyzed by genetic silencing. Talin-1 ectopic expression was validated as a rescue tool from MS-275-induced phenotype. The in vivo effect of MS-275-induced MC remodeling was validated in a mouse model of peritoneal EOC dissemination. RESULTS: Treatment of MCs with non-cytotoxic concentrations of MS-275 caused a consistent reduction of EOC adhesion. Proteomic analysis revealed several pathways altered upon MC treatment with MS-275, including ECM deposition/remodeling, adhesion receptors and actin cytoskeleton regulators. HDAC1/2 inhibition hampered actin cytoskeleton polymerization by downregulating actin regulators including Talin-1, impairing ß1 integrin activation, and leading to abnormal extracellular secretion and distribution of Fibronectin-1. Talin-1 ectopic expression rescued EOC adhesion to MS-275-treated MCs. In an experimental mouse model of metastatic EOC, MS-275 limited tumor invasion, Fibronectin-1 secretion and the sub-mesothelial accumulation of MC-derived carcinoma-associated fibroblasts. CONCLUSION: Our study unveils a direct impact of HDAC-1/2 in the regulation of MC/EOC adhesion and highlights the regulation of MC plasticity by epigenetic inhibition as a potential target for therapeutic intervention in EOC peritoneal metastasis.


Subject(s)
Benzamides , Carcinoma, Ovarian Epithelial , Cell Adhesion , Histone Deacetylase 1 , Histone Deacetylase 2 , Ovarian Neoplasms , Peritoneal Neoplasms , Animals , Female , Humans , Mice , Actin Cytoskeleton/metabolism , Antibodies, Monoclonal , Carcinoma, Ovarian Epithelial/metabolism , Epithelium , Extracellular Matrix Proteins/metabolism , Fibronectins , Histone Deacetylase 1/metabolism , Integrin alpha5 , Integrin beta1/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/metabolism , Proteomics , Pyridines , Talin/genetics , Talin/metabolism , Histone Deacetylase 2/metabolism , Cell Adhesion/genetics
2.
J Pathol ; 261(2): 238-251, 2023 10.
Article in English | MEDLINE | ID: mdl-37555348

ABSTRACT

Ovarian carcinomatosis is characterized by the accumulation of carcinoma-associated mesothelial cells (CAMs) in the peritoneal stroma and mainly originates through a mesothelial-to-mesenchymal transition (MMT) process. MMT has been proposed as a therapeutic target for peritoneal metastasis. Most ovarian cancer (OC) patients present at diagnosis with peritoneal seeding, which makes tumor progression control difficult by MMT modulation. An alternative approach is to use antibody-drug conjugates (ADCs) targeted directly to attack CAMs. This strategy could represent the cornerstone of precision-based medicine for peritoneal carcinomatosis. Here, we performed complete transcriptome analyses of ascitic fluid-isolated CAMs in advanced OC patients with primary-, high-, and low-grade, serous subtypes and following neoadjuvant chemotherapy. Our findings suggest that both cancer biological aggressiveness and chemotherapy-induced tumor mass reduction reflect the MMT-associated changes that take place in the tumor surrounding microenvironment. Accordingly, MMT-related genes, including fibroblast activation protein (FAP), mannose receptor C type 2 (MRC2), interleukin-11 receptor alpha (IL11RA), myristoylated alanine-rich C-kinase substrate (MARCKS), and sulfatase-1 (SULF1), were identified as specific actionable targets in CAMs of OC patients, which is a crucial step in the de novo design of ADCs. These cell surface target receptors were also validated in peritoneal CAMs of colorectal cancer peritoneal implants, indicating that ADC-based treatment could extend to other abdominal tumors that show peritoneal colonization. As proof of concept, a FAP-targeted ADC reduced tumor growth in an OC xenograft mouse model with peritoneal metastasis-associated fibroblasts. In summary, we propose MMT as a potential source of ADC-based therapeutic targets for peritoneal carcinomatosis. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Carcinoma , Immunoconjugates , Ovarian Neoplasms , Peritoneal Neoplasms , Female , Humans , Mice , Animals , Peritoneal Neoplasms/drug therapy , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/metabolism , Immunoconjugates/pharmacology , Immunoconjugates/metabolism , Carcinoma/pathology , Peritoneum/metabolism , Fibroblasts/pathology , Disease Models, Animal , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Cell Line, Tumor , Tumor Microenvironment
3.
Front Pharmacol ; 13: 868374, 2022.
Article in English | MEDLINE | ID: mdl-36052133

ABSTRACT

Background: Peritoneal dialysis (PD) is a renal replacement technique that requires repeated exposure of the peritoneum to hyperosmolar PD fluids (PDFs). Unfortunately, it promotes alterations of the peritoneal membrane (PM) that affects its functionality, including mesothelial-mesenchymal transition (MMT) of mesothelial cells (MCs), inflammation, angiogenesis, and fibrosis. Glucose is the most used osmotic agent, but it is known to be at least partially responsible, together with its degradation products (GDP), for those changes. Therefore, there is a need for more biocompatible osmotic agents to better maintain the PM. Herein we evaluated the biocompatibility of Steviol glycosides (SG)-based fluids. Methods: The ultrafiltration and transport capacities of SG-containing and glucose-based fluids were analyzed using artificial membranes and an in vivo mouse model, respectively. To investigate the biocompatibility of the fluids, Met-5A and human omental peritoneal MCs (HOMCs) were exposed in vitro to different types of glucose-based PDFs (conventional 4.25% glucose solution with high-GDP level and biocompatible 2.3% glucose solution with low-GDP level), SG-based fluids or treated with TGF-ß1. Mice submitted to surgery of intraperitoneal catheter insertion were treated for 40 days with SG- or glucose-based fluids. Peritoneal tissues were collected to determine thickness, MMT, angiogenesis, as well as peritoneal washings to analyze inflammation. Results: Dialysis membrane experiments demonstrated that SG-based fluids at 1.5%, 1%, and 0.75% had a similar trend in weight gain, based on curve slope, as glucose-based fluids. Analyzing transport capacity in vivo, 1% and 0.75% SG-based fluid-exposed nephrectomized mice extracted a similar amount of urea as the glucose 2.3% group. In vitro, PDF with high-glucose (4.25%) and high-GDP content induced mesenchymal markers and angiogenic factors (Snail1, Fibronectin, VEGF-A, FGF-2) and downregulates the epithelial marker E-Cadherin. In contrast, exposition to low-glucose-based fluids with low-GDP content or SG-based fluids showed higher viability and had less MMT. In vivo, SG-based fluids preserved MC monolayer, induced less PM thickness, angiogenesis, leukocyte infiltration, inflammatory cytokines release, and MMT compared with glucose-based fluids. Conclusion: SG showed better biocompatibility as an osmotic agent than glucose in vitro and in vivo, therefore, it could alternatively substitute glucose in PDF.

4.
Int J Mol Sci ; 22(21)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34768926

ABSTRACT

Most patients with ovarian cancer (OvCA) present peritoneal disseminated disease at the time of diagnosis. During peritoneal metastasis, cancer cells detach from the primary tumor and disseminate through the intraperitoneal fluid. The peritoneal mesothelial cell (PMC) monolayer that lines the abdominal cavity is the first barrier encountered by OvCA cells. Subsequent progression of tumors through the peritoneum leads to the accumulation into the peritoneal stroma of a sizeable population of carcinoma-associated fibroblasts (CAFs), which is mainly originated from a mesothelial-to-mesenchymal transition (MMT) process. A common characteristic of OvCA patients is the intraperitoneal accumulation of ascitic fluid, which is composed of cytokines, chemokines, growth factors, miRNAs, and proteins contained in exosomes, as well as tumor and mesothelial suspended cells, among other components that vary in proportion between patients. Exosomes are small extracellular vesicles that have been shown to mediate peritoneal metastasis by educating a pre-metastatic niche, promoting the accumulation of CAFs via MMT, and inducing tumor growth and chemoresistance. This review summarizes and discusses the pivotal role of exosomes and MMT as mediators of OvCA peritoneal colonization and as emerging diagnostic and therapeutic targets.


Subject(s)
Carcinoma, Ovarian Epithelial/pathology , Epithelial-Mesenchymal Transition/physiology , Exosomes/metabolism , Ovarian Neoplasms/pathology , Peritoneal Neoplasms/secondary , Ascitic Fluid/chemistry , Ascitic Fluid/cytology , Cell Line, Tumor , Cytokines/analysis , Epithelium/pathology , Female , Humans , Intercellular Signaling Peptides and Proteins/analysis , Peritoneum/pathology
5.
Sci Transl Med ; 13(608)2021 08 25.
Article in English | MEDLINE | ID: mdl-34433641

ABSTRACT

Life-saving renal replacement therapy by peritoneal dialysis (PD) is limited in use and duration by progressive impairment of peritoneal membrane integrity and homeostasis. Preservation of peritoneal membrane integrity during chronic PD remains an urgent but long unmet medical need. PD therapy failure results from peritoneal fibrosis and angiogenesis caused by hypertonic PD fluid (PDF)-induced mesothelial cytotoxicity. However, the pathophysiological mechanisms involved are incompletely understood, limiting identification of therapeutic targets. We report that addition of lithium chloride (LiCl) to PDF is a translatable intervention to counteract PDF-induced mesothelial cell death, peritoneal membrane fibrosis, and angiogenesis. LiCl improved mesothelial cell survival in a dose-dependent manner. Combined transcriptomic and proteomic characterization of icodextrin-based PDF-induced mesothelial cell injury identified αB-crystallin as the mesothelial cell protein most consistently counter-regulated by LiCl. In vitro and in vivo overexpression of αB-crystallin triggered a fibrotic phenotype and PDF-like up-regulation of vascular endothelial growth factor (VEGF), CD31-positive cells, and TGF-ß-independent activation of TGF-ß-regulated targets. In contrast, αB-crystallin knockdown decreased VEGF expression and early mesothelial-to-mesenchymal transition. LiCl reduced VEGF release and counteracted fibrosis- and angiogenesis-associated processes. αB-crystallin in patient-derived mesothelial cells was specifically up-regulated in response to PDF and increased in peritoneal mesothelial cells from biopsies from pediatric patients undergoing PD, correlating with markers of angiogenesis and fibrosis. LiCl-supplemented PDF promoted morphological preservation of mesothelial cells and the submesothelial zone in a mouse model of chronic PD. Thus, repurposing LiCl as a cytoprotective PDF additive may offer a translatable therapeutic strategy to combat peritoneal membrane deterioration during PD therapy.


Subject(s)
Crystallins , Peritoneal Fibrosis , Animals , Child , Epithelial Cells , Humans , Lithium , Mice , Peritoneum/pathology , Proteomics , Vascular Endothelial Growth Factor A
6.
Cell Death Dis ; 11(8): 647, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32811813

ABSTRACT

Despite their emerging relevance to fully understand disease pathogenesis, we have as yet a poor understanding as to how biomechanical signals are integrated with specific biochemical pathways to determine cell behaviour. Mesothelial-to-mesenchymal transition (MMT) markers colocalized with TGF-ß1-dependent signaling and yes-associated protein (YAP) activation across biopsies from different pathologies exhibiting peritoneal fibrosis, supporting mechanotransduction as a central driving component of these class of fibrotic lesions and its crosstalk with specific signaling pathways. Transcriptome and proteome profiling of the response of mesothelial cells (MCs) to linear cyclic stretch revealed molecular changes compatible with bona fide MMT, which (i) overlapped with established YAP target gene subsets, and were largely dependent on endogenous TGF-ß1 signaling. Importantly, TGF-ß1 blockade blunts the transcriptional upregulation of these gene signatures, but not the mechanical activation and nuclear translocation of YAP per se. We studied the role therein of caveolin-1 (CAV1), a plasma membrane mechanotransducer. Exposure of CAV1-deficient MCs to cyclic stretch led to a robust upregulation of MMT-related gene programs, which was blunted upon TGF-ß1 inhibition. Conversely, CAV1 depletion enhanced both TGF-ß1 and TGFBRI expression, whereas its re-expression blunted mechanical stretching-induced MMT. CAV1 genetic deficiency exacerbated MMT and adhesion formation in an experimental murine model of peritoneal ischaemic buttons. Taken together, these results support that CAV1-YAP/TAZ fine-tune the fibrotic response through the modulation of MMT, onto which TGF-ß1-dependent signaling coordinately converges. Our findings reveal a cooperation between biomechanical and biochemical signals in the triggering of MMT, representing a novel potential opportunity to intervene mechanically induced disorders coursing with peritoneal fibrosis, such as post-surgical adhesions.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Caveolin 1/metabolism , Peritoneal Fibrosis/metabolism , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/physiology , Animals , Caveolin 1/physiology , Caveolins/metabolism , Disease Models, Animal , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/genetics , Female , Humans , Male , Mice , Mice, Inbred C57BL , Peritoneal Dialysis/methods , Peritoneal Fibrosis/genetics , Peritoneal Fibrosis/pathology , Peritoneum/metabolism , Signal Transduction/drug effects , Smad3 Protein/metabolism , Tissue Adhesions/metabolism , Transcription Factors/physiology , Transforming Growth Factor beta1/metabolism , YAP-Signaling Proteins
7.
Cancers (Basel) ; 12(2)2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32098058

ABSTRACT

During peritoneal metastasis, cancer cells spread from abdominal solid tumors, disseminate through the peritoneal fluid and attach to and invade through mesothelial cells (MCs) that line the peritoneum. Intestinal adenocarcinomas originating in the mucosa infiltrate the submucosa, muscle layer, and serosa in order to finally colonize the peritoneal cavity. However, the mechanism by which metastatic cells leave the primary tumor and reach the peritoneal cavity has not been previously described. Hence, we investigate whether MCs lining visceral peritoneum, through a mesothelial-to-mesenchymal transition (MMT), are a source of carcinoma-associated fibroblasts (CAFs), which could contribute to cancer progression toward the peritoneal cavity. CAFs detected in biopsies from patients with superficially invasive colorectal cancer differed from locally advanced tumors. An aberrant accumulation of myofibroblasts expressing mesothelial markers was found in the stroma of deeply infiltrative tumors located in the neighborhood of a frequently activated mesothelium. We suggest that MMT is a key event in the early stages of peritoneal dissemination.

8.
J Vis Exp ; (137)2018 07 19.
Article in English | MEDLINE | ID: mdl-30080204

ABSTRACT

Peritoneal dialysis (PD) is a renal replacement therapy consistent on the administration and posterior recovery of a hyperosmotic fluid in the peritoneal cavity to drain water and toxic metabolites that functionally-insufficient kidneys are not able to eliminate. Unfortunately, this procedure deteriorates the peritoneum. Tissue damage triggers the onset of inflammation to heal the injury. If the injury persists and inflammation becomes chronic, it may lead to fibrosis, which is a common occurrence in many diseases. In PD, chronic inflammation and fibrosis, along with other specific processes related to these ones, lead to ultrafiltration capacity deterioration, which means the failure and subsequent cessation of the technique. Working with human samples provides information about this deterioration but presents technical and ethical limitations to obtain biopsies. Animal models are essential to study this deterioration since they overcome these shortcomings. A chronic mouse infusion model was developed in 2008, which benefits from the wide range of genetically modified mice, opening up the possibility of studying the mechanisms involved. This model employs a customized device designed for mice, consisting of a catheter attached to an access port that is placed subcutaneously at the back of the animal. This procedure avoids continuous puncture of the peritoneum during long-term experiments, reducing infections and inflammation due to injections. Thanks to this model, peritoneal damage induced by chronic PD fluid exposure has been characterized and modulated. This technique allows the infusion of large volumes of fluids and could be used for the study of other diseases in which inoculation of drugs or other substances over extended periods of time is necessary. This article shows the method for the surgical placement of the catheter in mice. Moreover, it explains the procedure for a 5/6 nephrectomy to mimic the state of renal insufficiency present in PD patients.


Subject(s)
Catheters/statistics & numerical data , Nephrectomy/methods , Peritoneal Dialysis/methods , Animals , Disease Models, Animal , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL