Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Mater ; 36(3): 1262-1272, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38370279

ABSTRACT

Reactive oxygen species (ROS) play a key role in several biological functions like regulating cell survival and signaling; however, their effect can range from beneficial to nondesirable oxidative stress when they are overproduced causing inflammation or cancer diseases. Thus, the design of tailor-made ROS-responsive polymers offers the possibility of engineering hydrogels for target therapies. In this work, we developed thioether-based ROS-responsive difunctional monomers from ethylene glycol/thioether acrylate (EGnSA) with different lengths of the EGn chain (n = 1, 2, 3) by the thiol-Michael addition click reaction. The presence of acrylate groups allowed their photopolymerization by UV light, while the thioether groups conferred ROS-responsive properties. As a result, smart PEGnSA hydrogels were obtained, which could be processed by four-dimensional (4D) printing. The mechanical properties of the hydrogels were determined by rheology, pointing out a decrease of the elastic modulus (G') with the length of the EG segment. To enhance the stability of the hydrogels after swelling, the EGnSA monomers were copolymerized with a polar monomer, 2-hydroxyethyl acrylate (HEA), leading to P[(EGnSA)x-co-HEAy] with improved compatibility in aqueous media, making it a less brittle material. Swelling properties of the hydrogels increased in the presence of hydrogen peroxide, a kind of ROS, reaching values of ≈130% for P[(EG3SA)7-co-HEA93] which confirms the stimuli-responsive properties. Then, the P[(EG3SA)x-co-HEAy] hydrogels were employed as matrixes for the encapsulation of a chemotherapeutic drug, 5-fluorouracil (5FU), which showed sustained release over time modulated by the presence of H2O2. Finally, the effect of the 5-FU release from P[(EG3SA)x-co-HEAy] hydrogels was tested in vitro with melanoma cancer cells B16F10, pointing out B16F10 growth inhibition values in the range of 40-60% modulated by the EG3SA percentage and the presence or absence of ROS agents, thus confirming their excellent ROS-responsive properties for the treatment of localized pathologies.

2.
ChemSusChem ; 15(12): e202200294, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35363435

ABSTRACT

Potassium batteries show interesting peculiarities as large-scale energy storage systems and, in this scenario, the formulation of polymer electrolytes obtained from sustainable resources or waste-derived products represents a milestone activity. In this study, a lignin-based membrane is designed by crosslinking a pre-oxidized Kraft lignin matrix with an ethoxylated difunctional oligomer, leading to self-standing membranes that are able to incorporate solvated potassium salts. The in-depth electrochemical characterization highlights a wide stability window (up to 4 V) and an ionic conductivity exceeding 10-3  S cm-1 at ambient temperature. When potassium metal cell prototypes are assembled, the lignin-based electrolyte attains significant electrochemical performances, with an initial specific capacity of 168 mAh g-1 at 0.05 A g-1 and an excellent operation for more than 200 cycles, which is an unprecedented outcome for biosourced systems in potassium batteries.


Subject(s)
Polymers , Potassium , Electric Power Supplies , Electrolytes/chemistry , Lignin/chemistry , Polymers/chemistry , Waste Products
SELECTION OF CITATIONS
SEARCH DETAIL
...