Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Appl Acarol ; 86(4): 479-498, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35534782

ABSTRACT

Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) is a predatory mite, effective at controlling whiteflies and thrips in protected crops. However, on tomato its efficacy as a biocontrol agent is hindered, most probably by the plant trichomes and their exudates. Our aim was to characterize the response of A. swirskii to the tomato trichome exudates and identify three major detoxification gene sets in this species: cytochromes P450 (CYPs), glutathione S-transferases (GSTs) and carboxyl/cholinesterases (CCEs). Mites were exposed separately to tomato and pepper, a favourable host plant for A. swirskii, after which their transcriptional responses were analysed and compared. The de novo transcriptome assembly resulted in 71,336 unigenes with 66.1% of them annotated. Thirty-nine A. swirskii genes were differentially expressed after transfer on tomato leaves when compared to pepper leaves; some of the expressed genes were associated with the metabolism of tomato exudates. Our results illustrate that the detoxification gene sets CYPs, GSTs and CCEs are abundant in A. swirskii, but do not play a significant role when in contact with the tomato exudates.


Subject(s)
Mites , Solanum lycopersicum , Thysanoptera , Animals , Solanum lycopersicum/genetics , Mites/genetics , Pest Control, Biological/methods , Predatory Behavior , Transcriptome
2.
Glob Chang Biol ; 28(8): 2657-2677, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35106859

ABSTRACT

Global warming is affecting the population dynamics and trophic interactions across a wide range of ecosystems and habitats. Translating these real-time effects into their long-term consequences remains a challenge. The rapid and extreme warming period that occurred after the Last Glacial Maximum (LGM) during the Pleistocene-Holocene transition (7-12 thousand years ago) provides an opportunity to gain insights into the long-term responses of natural populations to periods with global warming. The effects of this post-LGM warming period have been assessed in many terrestrial taxa, whereas insights into the impacts of rapid global warming on marine taxa remain limited, especially for megafauna. In order to understand how large-scale climate fluctuations during the post-LGM affected baleen whales and their prey, we conducted an extensive, large-scale analysis of the long-term effects of the post-LGM warming on abundance and inter-ocean connectivity in eight baleen whale and seven prey (fish and invertebrates) species across the Southern and the North Atlantic Ocean; two ocean basins that differ in key oceanographic features. The analysis was based upon 7032 mitochondrial DNA sequences as well as genome-wide DNA sequence variation in 100 individuals. The estimated temporal changes in genetic diversity during the last 30,000 years indicated that most baleen whale populations underwent post-LGM expansions in both ocean basins. The increase in baleen whale abundance during the Holocene was associated with simultaneous changes in their prey and climate. Highly correlated, synchronized and exponential increases in abundance in both baleen whales and their prey in the Southern Ocean were indicative of a dramatic increase in ocean productivity. In contrast, the demographic fluctuations observed in baleen whales and their prey in the North Atlantic Ocean were subtle, varying across taxa and time. Perhaps most important was the observation that the ocean-wide expansions and decreases in abundance that were initiated by the post-LGM global warming, continued for millennia after global temperatures stabilized, reflecting persistent, long-lasting impacts of global warming on marine fauna.


Subject(s)
Ecosystem , Global Warming , Animals , Atlantic Ocean , Population Dynamics , Whales/physiology
3.
Biol Rev Camb Philos Soc ; 95(6): 1838-1854, 2020 12.
Article in English | MEDLINE | ID: mdl-32794644

ABSTRACT

Biological control is widely successful at controlling pests, but effective biocontrol agents are now more difficult to import from countries of origin due to more restrictive international trade laws (the Nagoya Protocol). Coupled with increasing demand, the efficacy of existing and new biocontrol agents needs to be improved with genetic and genomic approaches. Although they have been underutilised in the past, application of genetic and genomic techniques is becoming more feasible from both technological and economic perspectives. We review current methods and provide a framework for using them. First, it is necessary to identify which biocontrol trait to select and in what direction. Next, the genes or markers linked to these traits need be determined, including how to implement this information into a selective breeding program. Choosing a trait can be assisted by modelling to account for the proper agro-ecological context, and by knowing which traits have sufficiently high heritability values. We provide guidelines for designing genomic strategies in biocontrol programs, which depend on the organism, budget, and desired objective. Genomic approaches start with genome sequencing and assembly. We provide a guide for deciding the most successful sequencing strategy for biocontrol agents. Gene discovery involves quantitative trait loci analyses, transcriptomic and proteomic studies, and gene editing. Improving biocontrol practices includes marker-assisted selection, genomic selection and microbiome manipulation of biocontrol agents, and monitoring for genetic variation during rearing and post-release. We conclude by identifying the most promising applications of genetic and genomic methods to improve biological control efficacy.


Subject(s)
Commerce , Proteomics , Genomics , Internationality , Quantitative Trait Loci
4.
Genome Biol Evol ; 6(2): 273-89, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24443439

ABSTRACT

Understanding the genomic basis of evolutionary adaptation requires insight into the molecular basis underlying phenotypic variation. However, even changes in molecular pathways associated with extreme variation, gains and losses of specific phenotypes, remain largely uncharacterized. Here, we investigate the large interspecific differences in the ability to survive infection by parasitoids across 11 Drosophila species and identify genomic changes associated with gains and losses of parasitoid resistance. We show that a cellular immune defense, encapsulation, and the production of a specialized blood cell, lamellocytes, are restricted to a sublineage of Drosophila, but that encapsulation is absent in one species of this sublineage, Drosophila sechellia. Our comparative analyses of hemopoiesis pathway genes and of genes differentially expressed during the encapsulation response revealed that hemopoiesis-associated genes are highly conserved and present in all species independently of their resistance. In contrast, 11 genes that are differentially expressed during the response to parasitoids are novel genes, specific to the Drosophila sublineage capable of lamellocyte-mediated encapsulation. These novel genes, which are predominantly expressed in hemocytes, arose via duplications, whereby five of them also showed signatures of positive selection, as expected if they were recruited for new functions. Three of these novel genes further showed large-scale and presumably loss-of-function sequence changes in D. sechellia, consistent with the loss of resistance in this species. In combination, these convergent lines of evidence suggest that co-option of duplicated genes in existing pathways and subsequent neofunctionalization are likely to have contributed to the evolution of the lamellocyte-mediated encapsulation in Drosophila.


Subject(s)
Biological Evolution , Drosophila/genetics , Drosophila/immunology , Animals , Drosophila/classification , Drosophila/parasitology , Drosophila Proteins/genetics , Drosophila Proteins/immunology , Genomics , Hemocytes/immunology , Host-Parasite Interactions , Immunity, Cellular , Phenotype , Phylogeny , Wasps/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...