Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 66(8): 5907-5936, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37017629

ABSTRACT

CCT251236 1, a potent chemical probe, was previously developed from a cell-based phenotypic high-throughput screen (HTS) to discover inhibitors of transcription mediated by HSF1, a transcription factor that supports malignancy. Owing to its activity against models of refractory human ovarian cancer, 1 was progressed into lead optimization. The reduction of P-glycoprotein efflux became a focus of early compound optimization; central ring halogen substitution was demonstrated by matched molecular pair analysis to be an effective strategy to mitigate this liability. Further multiparameter optimization led to the design of the clinical candidate, CCT361814/NXP800 22, a potent and orally bioavailable fluorobisamide, which caused tumor regression in a human ovarian adenocarcinoma xenograft model with on-pathway biomarker modulation and a clean in vitro safety profile. Following its favorable dose prediction to human, 22 has now progressed to phase 1 clinical trial as a potential future treatment for refractory ovarian cancer and other malignancies.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Humans , Female , Transcription Factors/metabolism , Ovarian Neoplasms/pathology , Cell Line, Tumor , Antineoplastic Agents/pharmacology
2.
Bioorg Med Chem Lett ; 42: 128050, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33887439

ABSTRACT

ERAP1 is a zinc-dependent M1-aminopeptidase that trims lipophilic amino acids from the N-terminus of peptides. Owing to its importance in the processing of antigens and regulation of the adaptive immune response, dysregulation of the highly polymorphic ERAP1 has been implicated in autoimmune disease and cancer. To test this hypothesis and establish the role of ERAP1 in these disease areas, high affinity, cell permeable and selective chemical probes are essential. DG013A 1, is a phosphinic acid tripeptide mimetic inhibitor with reported low nanomolar affinity for ERAP1. However, this chemotype is a privileged structure for binding to various metal-dependent peptidases and contains a highly charged phosphinic acid moiety, so it was unclear whether it would display the high selectivity and passive permeability required for a chemical probe. Therefore, we designed a new stereoselective route to synthesize a library of DG013A 1 analogues to determine the suitability of this compound as a cellular chemical probe to validate ERAP1 as a drug discovery target.


Subject(s)
Aminopeptidases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Oligopeptides/pharmacology , Phosphinic Acids/pharmacology , Aminopeptidases/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Minor Histocompatibility Antigens/metabolism , Models, Molecular , Molecular Structure , Oligopeptides/chemical synthesis , Oligopeptides/chemistry , Phosphinic Acids/chemical synthesis , Phosphinic Acids/chemistry , Structure-Activity Relationship
3.
J Med Chem ; 61(3): 918-933, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29240418

ABSTRACT

Demonstrating intracellular protein target engagement is an essential step in the development and progression of new chemical probes and potential small molecule therapeutics. However, this can be particularly challenging for poorly studied and noncatalytic proteins, as robust proximal biomarkers are rarely known. To confirm that our recently discovered chemical probe 1 (CCT251236) binds the putative transcription factor regulator pirin in living cells, we developed a heterobifunctional protein degradation probe. Focusing on linker design and physicochemical properties, we generated a highly active probe 16 (CCT367766) in only three iterations, validating our efficient strategy for degradation probe design against nonvalidated protein targets.


Subject(s)
Prion Proteins/metabolism , Proteolysis/drug effects , Cell Line , Cell Survival , Models, Molecular , Protein Conformation
4.
ACS Med Chem Lett ; 9(12): 1199-1204, 2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30613326

ABSTRACT

Polypharmacology is often a key contributor to the efficacy of a drug, but is also a potential risk. We investigated two hits discovered via a cell-based phenotypic screen, the CDK9 inhibitor CCT250006 (1) and the pirin ligand CCT245232 (2), to establish methodology to elucidate their secondary protein targets. Using computational pocket-based analysis, we discovered intrafamily polypharmacology for our kinase inhibitor, despite little overall sequence identity. The interfamily polypharmacology of 2 with B-Raf was used to discover a novel pirin ligand from a very small but privileged compound library despite no apparent ligand or binding site similarity. Our data demonstrates that in areas of drug discovery where intrafamily polypharmacology is often an issue, ligand dissimilarity cannot necessarily be used to assume different off-target profiles and that understanding interfamily polypharmacology will be important in the future to reduce the risk of idiopathic toxicity and in the design of screening libraries.

5.
J Med Chem ; 60(1): 180-201, 2017 01 12.
Article in English | MEDLINE | ID: mdl-28004573

ABSTRACT

Phenotypic screens, which focus on measuring and quantifying discrete cellular changes rather than affinity for individual recombinant proteins, have recently attracted renewed interest as an efficient strategy for drug discovery. In this article, we describe the discovery of a new chemical probe, bisamide (CCT251236), identified using an unbiased phenotypic screen to detect inhibitors of the HSF1 stress pathway. The chemical probe is orally bioavailable and displays efficacy in a human ovarian carcinoma xenograft model. By developing cell-based SAR and using chemical proteomics, we identified pirin as a high affinity molecular target, which was confirmed by SPR and crystallography.


Subject(s)
Amides/chemistry , Carrier Proteins/chemistry , DNA-Binding Proteins/chemistry , Nuclear Proteins/chemistry , Quinolines/chemistry , Transcription Factors/chemistry , Administration, Oral , Amides/administration & dosage , Amides/pharmacology , Biological Availability , Carbon-13 Magnetic Resonance Spectroscopy , Dioxygenases , Drug Discovery , Heat Shock Transcription Factors , Ligands , Proton Magnetic Resonance Spectroscopy , Quinolines/administration & dosage , Quinolines/pharmacology , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL