Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 15(15): 4229-4236, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634114

ABSTRACT

In this study, we explore the superchaotropic effect of various polyoxometalate or boron cluster nano-ions on hydrophilic neutral surfaces. Nano-ions, characterized by low charge densities, exhibit strong adsorption on non-ionic hydrophilic surfaces like PEGylated micelles. This adsorption phenomenon was attributed to the enthalpically favorable dehydration of nano-ions, the so-called superchaotropic effect. Here, we investigate the adsorption of three nano-ions, α-SiW12O404-, α-PW12O403-, and B12I122-, with decreasing charge density or increasing superchaotropicity (or hydrophobicity), on hydrophilic solid surfaces, PEGylated gold nanoparticles, and PEGylated gold-coated quartz crystal. Solid surfaces are devoid of hydrophobic regions, enabling the study of the subtle nuance between hydrophobic and superchaotropic effects. Unlike adsorption on PEGylated micelles, the adsorption constant decreases with a reduced charge density, aligning with the well-established principle that hydrophobic ions do not adsorb on hydrophilic surfaces. This research improves our understanding of the subtle difference between superchaotropic and hydrophobic effects in nano-ion adsorption phenomena.

2.
J Colloid Interface Sci ; 629(Pt A): 794-804, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36099847

ABSTRACT

Interactions between biomolecules are ubiquitous in nature and crucial to many applications including vaccine development; environmentally friendly textile detergents; and food formulation. Using small angle X-ray scattering and structure-based molecular simulations, we explore protein-protein interactions in dilute to semi-concentrated protein solutions. We address the pertinent question, whether interaction models developed at infinite dilution can be extrapolated to concentrated regimes? Our analysis is based on measured and simulated osmotic second virial coefficients and solution structure factors at varying protein concentration and for different variants of the protein Thermomyces Lanuginosus Lipase (TLL). We show that in order to span the dilute and semi-concentrated regime, any model must carefully capture the balance between spatial and orientational correlations as the protein concentration is elevated. This requires consideration of the protein surface morphology, including possible patch interactions. Experimental data for TLL is most accurately described when assuming a patchy interaction, leading to dimer formation. Our analysis supports that the dimeric proteins predominantly exist in their open conformation where the active site is exposed, thereby maximising hydrophobic attractions that promote inter-protein alignment.


Subject(s)
Ascomycota , Eurotiales , Detergents , Ascomycota/metabolism , Lipase/chemistry , Proteins , Solutions
3.
J Chem Phys ; 155(19): 194111, 2021 Nov 21.
Article in English | MEDLINE | ID: mdl-34800960

ABSTRACT

The osmotic pressure of dilute electrolyte solutions containing charged macro-ions as well as counterions can be computed directly from the particle distribution via the well-known cell model. Originally derived within the Poisson-Boltzmann mean-field approximation, the cell model considers a single macro-ion centered into a cell, together with counterions needed to neutralize the total cell charge, while it neglects the phenomena due to macro-ion correlations. While extensively applied in coarse-grained Monte Carlo (MC) simulations of continuum solvent systems, the cell model, in its original formulation, neglects the macro-ion shape anisotropy and details of the surface charge distribution. In this paper, by comparing one-body and two-body coarse-grained MC simulations, we first establish an upper limit for the assumption of neglecting correlations between macro-ions, and second, we validate the approximation of using a non-spherical macro-ion. Next, we extend the cell model to all-atom molecular dynamics simulations and show that protein concentration-dependent osmotic pressures can be obtained by confining counterions in a virtual, spherical subspace defining the protein number density. Finally, we show the possibility of using specific interaction parameters for the protein-ion and ion-ion interactions, enabling studies of protein concentration-dependent ion-specific effects using merely a single protein molecule.


Subject(s)
Cells , Molecular Dynamics Simulation , Osmotic Pressure , Proteins/analysis , Proteins/chemistry , Cells/chemistry , Ions , Monte Carlo Method , Solvents
4.
Langmuir ; 37(42): 12278-12289, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34636247

ABSTRACT

The formation of dense protein interfacial layers at a free air-water interface is known to result from both diffusion and advection. Furthermore, protein interactions in concentrated phases are strongly dependent on their overall positive or negative net charge, which is controlled by the solution pH. As a consequence, an interesting question is whether the presence of an advection flow of water toward the interface during protein adsorption produces different kinetics and interfacial structure of the adsorbed layer, depending on the net charge of the involved proteins and, possibly, on the sign of this charge. Here we test a combination of the following parameters using ovalbumin and lysozyme as model proteins: positive or negative net charge and the presence or absence of advection flow. The formation and the organization of the interfacial layers are studied by neutron reflectivity and null-ellipsometry measurements. We show that the combined effect of a positive charge of lysozyme and ovalbumin and the presence of advection flow does induce the formation of interfacial multilayers. Conversely, negatively charged ovalbumin forms monolayers, whether advection flow is present or not. We show that an advection/diffusion model cannot correctly describe the adsorption kinetics of multilayers, even in the hypothesis of a concentration-dependent diffusion coefficient as in colloidal filtration, for instance. Still, it is clear that advection is a necessary condition for making multilayers through a mechanism that remains to be determined, which paves the way for future research.


Subject(s)
Air , Water , Adsorption , Kinetics , Protein Transport , Surface Properties
5.
J Phys Chem B ; 121(14): 3000-3006, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28319376

ABSTRACT

The stability of aqueous protein solutions is strongly affected by multivalent ions, which induce ion-ion correlations beyond the scope of classical mean-field theory. Using all-atom molecular dynamics (MD) and coarse grained Monte Carlo (MC) simulations, we investigate the interaction between a pair of protein molecules in 3:1 electrolyte solution. In agreement with available experimental findings of "reentrant protein condensation", we observe an anomalous trend in the protein-protein potential of mean force with increasing electrolyte concentration in the order: (i) double-layer repulsion, (ii) ion-ion correlation attraction, (iii) overcharge repulsion, and in excess of 1:1 salt, (iv) non Coulombic attraction. To efficiently sample configurational space we explore hybrid continuum solvent models, applicable to many-protein systems, where weakly coupled ions are treated implicitly, while strongly coupled ones are treated explicitly. Good agreement is found with the primitive model of electrolytes, as well as with atomic models of protein and solvent.


Subject(s)
Molecular Dynamics Simulation , Salts/chemistry , Serum Albumin, Human/chemistry , Yttrium/chemistry , Humans , Monte Carlo Method , Protein Binding , Protein Stability , Solutions
6.
Phys Chem Chem Phys ; 18(41): 28458-28465, 2016 Oct 19.
Article in English | MEDLINE | ID: mdl-27722380

ABSTRACT

We obtained osmotic pressure data of lysozyme solutions, describing their physical states over a wide concentration range, using osmotic stress for pressures between 0.05 bar and about 40 bar and volume fractions between 0.01 and 0.61. The osmotic pressure vs. volume fraction data consist of a dilute, gas-phase regime, a transition regime with a high-compressibility plateau, and a concentrated regime where the system is nearly incompressible. The first two regimes are shifted towards a higher protein volume fraction upon decreasing the strength or the range of electrostatic interactions. We describe this shift and the overall shape of the experimental data in these two regimes through a model accounting for a steric repulsion, a short-range van der Waals attraction and a screened electrostatic repulsion. The transition is caused by crystallization, as shown by small-angle X-ray scattering. We verified that our data points correspond to thermodynamic equilibria, and thus that they consist of the reference experimental counterpart of a thermodynamic equation of state.

7.
Soft Matter ; 11(2): 389-99, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25388767

ABSTRACT

We examine the internal structure of milk casein micelles using the contrast variation method in Small-Angle Neutron Scattering (SANS). Experiments were performed with casein dispersions of different origins (i.e., milk powder or fresh milk) and extended to very low q-values (∼9 × 10(-4) Å(-1)), thus making it possible to precisely determine the apparent gyration radius Rg at each contrast. From the variation of I(q → 0) with contrast, we determine the distribution of composition of all the particles in the dispersions. As expected, most of these particles are micelles, made of casein and calcium phosphate, with a narrow distribution in compositions. These micelles always coexist with a very small fraction of fat droplets, with sizes in the range of 20-400 nm. For the dispersions prepared from fresh milk, which were purified under particularly stringent conditions, the number ratio of fat droplets to casein micelles is as low as 1 to 10(6). In that case, we are able to subtract from the total intensity the contribution of the fat droplets and in this way obtain the contribution of the micelles only. We then analyze the variation of this contribution with contrast using the approach pioneered by H. B. Stuhrmann. We model the casein micelle as a core-shell spherical object, in which the local scattering length density is determined by the ratio of calcium phosphate nanoclusters to proteins. We find that models in which the shell has a lower concentration of calcium phosphate than the core give a better agreement than models in which the shell has a higher density than the core.


Subject(s)
Caseins/chemistry , Milk/chemistry , Animals , Cattle , Micelles , Scattering, Small Angle
8.
Soft Matter ; 11(4): 806, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25514249

ABSTRACT

Correction for 'Structural heterogeneity of milk casein micelles: a SANS contrast variation study' by Antoine Bouchoux et al., Soft Matter, 2015, DOI: 10.1039/c4sm01705f.

SELECTION OF CITATIONS
SEARCH DETAIL