Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 255: 128004, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37979737

ABSTRACT

Cellulose nanofibers have been extracted from arecanut palm sheath fibers via mild oxalic acid hydrolysis coupled with steam explosion technique. Cellulose nanofibers with diameter of 20.23 nm were obtained from arecanut palm sheath fibers. A series of robust hydrophobic cellulose nanopapers were fabricated by combining the synergistic effect of surface roughness induced by the successful deposition of zinc oxide (ZnO) nanoflakes and stearic acid modification via a simple and cost-effective method. In this work, agro-waste arecanut palm sheath was employed as a novel source for the extraction of cellulose nanofibers. 2 wt% of ZnO nanoflakes and 1 M concentration of stearic acid were used to fabricate mechanically robust hydrophobic cellulose nanopapers with a water contact angle (WCA) of 134°. During the deposition of zinc oxide nanoflakes on the CNP for inducing surface roughness, a hydrogen bonding interaction is formed between the hydroxyl groups of cellulose nanofibers and the zinc oxide nanoflakes. When this surface roughened CNP was dipped in stearic acid solution. The hydroxyl groups in zinc oxide nanoflakes undergoes esterification reaction with carboxyl groups in stearic acid solution forming an insoluble stearate layer and thus inducing hydrophobicity on CNP. The fabricated hydrophobic cellulose nanopaper displayed a tensile strength of 22.4 MPa and better UV blocking ability which is highly desirable for the sustainable packaging material in the current scenario. Furthermore, the service life of the pristine and modified cellulose nanopapers was predicted using the Arrhenius equation based on the tensile properties obtained during the accelerated ageing studies. The outcome of this study would be broadening the potential applications of hydrophobic and mechanically robust cellulose nanopapers in sustainable packaging applications.


Subject(s)
Nanofibers , Zinc Oxide , Zinc Oxide/chemistry , Cellulose/chemistry , Product Packaging , Nanofibers/chemistry , Hydrophobic and Hydrophilic Interactions
2.
Polymers (Basel) ; 15(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37896399

ABSTRACT

A large volume of polymeric waste is generated in cities, and some of this reaches the sea and beaches. This waste stays for hundreds of years, damaging marine environments and organisms. To minimize the effects of pollution, collection and recycling allow a return to the production chain. This research aims to produce and evaluate a polymeric mixture obtained via processing plastic waste collected on the beaches of the city of Ilhéus-Bahia. Subsequently, the mixture is converted into a granulated form for application as fine aggregate in the production of cementitious matrices. A polymer blend of polystyrene, polypropylene, and high- and low-density polyethylene was obtained and evaluated by thermal, morphological, and mechanical tests in three processing stages. The degradation temperatures were close for the three processing stages and the level of processing influenced the mechanical strength. As for elastic modulus and deformation, there was no significant difference in using the mixture processed once or twice. The results showed that the reuse of the waste is applicable, the mixture presented a compact, reasonably homogeneous material with different morphology. Therefore, this work finds importance in the possibility of promoting waste recycling and adding value to a material that would become waste, thus showing its potential for application in the construction industry as an addition to cementitious mixtures and leading to savings in inputs.

3.
Carbohydr Polym ; 287: 119338, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35422297

ABSTRACT

Traditional cotton gauze derived from cellulose has many limitations in the processes of wound healing. To overcome these hassles, we used cellulose nanofibers (CNF) incorporated with curcumin for the fabrication of wound healing 3D porous aerogel. Cellulose nanofibers synthesized from plant waste are promising sustainable nanomaterials due to their biocompatibility and biodegradability. Ionic cross linking with sodium alginate was performed to maintain the mechanical strength. SEM results revealed highly porous architecture that effectively promoted wound healing, as a result of macro- and micro-porous architecture and curcumin. In-vitro drug release studies showed a slow and steady release pattern. The 3D porous nano bio aerogel with curcumin significantly promoted the migration of fibroblast cells and had excellent antimicrobial activity against pathogenic microorganisms. In-vivo studies showed angiogenesis without rejection or inflammation of the scaffold. From the observations, we can conclude that this novel 3D porous aerogel can be used to treat chronic wounds.


Subject(s)
Curcumin , Nanofibers , Alginates , Cellulose/pharmacology , Curcumin/pharmacology , Porosity
4.
Molecules ; 26(8)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924692

ABSTRACT

Hydrophilic behaviour of carrageenan macroalgae biopolymer, due to hydroxyl groups, has limited its applications, especially for packaging. In this study, macroalgae were reinforced with cellulose nanofibrils (CNFs) isolated from kenaf bast fibres. The macroalgae CNF film was after that treated with silane for hydrophobicity enhancement. The wettability and functional properties of unmodified macroalgae CNF films were compared with silane-modified macroalgae CNF films. Characterisation of the unmodified and modified biopolymers films was investigated. The atomic force microscope (AFM), SEM morphology, tensile properties, water contact angle, and thermal behaviour of the biofilms showed that the incorporation of Kenaf bast CNF remarkably increased the strength, moisture resistance, and thermal stability of the macroalgae biopolymer films. Moreover, the films' modification using a silane coupling agent further enhanced the strength and thermal stability of the films apart from improved water-resistance of the biopolymer films compared to unmodified films. The morphology and AFM showed good interfacial interaction of the components of the biopolymer films. The modified biopolymer films exhibited significantly improved hydrophobic properties compared to the unmodified films due to the enhanced dispersion resulting from the silane treatment. The improved biopolymer films can potentially be utilised as packaging materials.


Subject(s)
Biopolymers/chemistry , Cellulose/chemistry , Silanes/chemistry , Hibiscus/chemistry , Nanocomposites/chemistry , Seaweed/metabolism , Tensile Strength
5.
Braz. arch. biol. technol ; 64: e21200117, 2021. tab
Article in English | LILACS | ID: biblio-1285553

ABSTRACT

Abstract This study evaluated the effects of three chemical pretreatments of biomass sorghum (BS): dilute alkaline (PTA1 and PTA2), dilute acid (PTB1 and PTB2) and alkaline hydrogen peroxide (PTC1 and PTC2) in the enzymatic hydrolysis and ethanol production. Among the six investigated conditions, the pretreatment with 7.36% H2O2 (PTC2) was the most efficient in the lignin removal and preservation of the polysaccharide fraction. After the enzymatic hydrolysis, increases in the glucose and xylose concentrations were observed in the pretreated BS hydrolysates, mainly in PTB1 and PTC1. All the hydrolysates obtained low concentrations of inhibitors. In the alcoholic fermentations with Pichia stiptis, the greatest ethanol yield was obtained in PTB1 hydrolysate (3.84 g L-1), corresponding to 16.15% of yield. The highest ethanol yield in PTB1 hydrolysate can be justified by the maximum concentration of xylose obtained in this hydrolysate, demonstrating the potential of P. stiptis in the fermentation of pentose to ethanol. The results indicated that biomass sorghum is an alternative lignocellulose source with potential for the production of second generation ethanol, opening up prospects for additional studies.


Subject(s)
Biomass , Ethanol , Chemical Phenomena , Hydrogen Peroxide , Metals, Alkali
6.
Carbohydr Polym ; 246: 116663, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32747295

ABSTRACT

Electromagnetic (EM) pollution is ubiquitous and has soared to a great extent in the past few decades. The use of plant sourced cellulose nanofibers to fabricate sustainable and high performance electromagnetic shielding materials is foreseen as a green solution by the electronics industry to address this unseen pollutant. In this view, we report a facile and environmentally benign strategy to synthesize ultra-light and highly conductive aerogels derived from cellulose nanofibers (CNF) decorated with polyaniline (PANI) via a simple in-situ polymerization and subsequent freeze drying process devoid of any volatile organic solvents. The obtained conductive aerogels exhibited density as low as 0.01925 g/cc with a maximum EMI shielding value -32 dB in X band region. These porous shields demonstrated strong microwave absorption behavior (95 %) with minimal reflection (5 %) coupled with high specific EMI SE value ∼1667 dB.cm3. g-1 which make these aerogels a potential candidate for use in telecommunication, military and defense applications.

7.
Polymers (Basel) ; 12(8)2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32781602

ABSTRACT

Cellulose nanomaterials from plant fibre provide various potential applications (i.e., biomedical, automotive, packaging, etc.). The biomedical application of nanocellulose isolated from plant fibre, which is a carbohydrate-based source, is very viable in the 21st century. The essential characteristics of plant fibre-based nanocellulose, which include its molecular, tensile and mechanical properties, as well as its biodegradability potential, have been widely explored for functional materials in the preparation of aerogel. Plant cellulose nano fibre (CNF)-based aerogels are novel functional materials that have attracted remarkable interest. In recent years, CNF aerogel has been extensively used in the biomedical field due to its biocompatibility, renewability and biodegradability. The effective surface area of CNFs influences broad applications in biological and medical studies such as sustainable antibiotic delivery for wound healing, the preparation of scaffolds for tissue cultures, the development of drug delivery systems, biosensing and an antimicrobial film for wound healing. Many researchers have a growing interest in using CNF-based aerogels in the mentioned applications. The application of cellulose-based materials is widely reported in the literature. However, only a few studies discuss the potential of cellulose nanofibre aerogel in detail. The potential applications of CNF aerogel include composites, organic-inorganic hybrids, gels, foams, aerogels/xerogels, coatings and nano-paper, bioactive and wound dressing materials and bioconversion. The potential applications of CNF have rarely been a subject of extensive review. Thus, extensive studies to develop materials with cheaper and better properties, high prospects and effectiveness for many applications are the focus of the present work. The present review focuses on the evolution of aerogels via characterisation studies on the isolation of CNF-based aerogels. The study concludes with a description of the potential and challenges of developing sustainable materials for biomedical applications.

8.
Curr Microbiol ; 77(5): 738-745, 2020 May.
Article in English | MEDLINE | ID: mdl-31915987

ABSTRACT

This study investigated the enzymatic saccharification of alkaline-pretreated sugarcane bagasse (PSB) and the bioconversion of simple sugars from hydrolysates to ethanol and other bioproducts by the yeast Galactomyces geotrichum. The effects of percentage of dry substrate (3 and 10% w/v) and time of hydrolysis (24 and 72 h) in the content of released sugars were evaluated. The concentrations of monosaccharides and total reducing sugars (TRS) were calculated by high-performance liquid chromatography (HPLC) and by 3.5-dinitrosalicylic acid (DNS) method, respectively. The highest concentrations of TRS, glucose and xylose (73.96, 31.78 and 10.85 g/L, respectively) were obtained after the saccharification of 10% of PSB with Cellic CTec3 multi-enzyme cocktail (10 FPU/g cellulose) during 72 h (hydrolysate IV). G. geotrichum UFVJM-R150 fermented both glucose and xylose from the hydrolysates. The most efficient ethanol production was obtained after the fermentation of hydrolysate IV (9.99 g/L of ethanol, volumetric productivity-QP of 0.42 g/L.h and yield of ethanol as a function of the substrate-YP/S of 0.27 gethanol/gsugar). Besides ethanol, G. geotrichum was also able to produce other high-value chemicals such as isoamyl alcohol and galacturonic acid. This is the first report of the potential of the yeast G. geotrichum to fermentate sugarcane bagasse hydrolysates with the production of important bioproducts to further use by biorefineries.


Subject(s)
Cellulose/metabolism , Ethanol/metabolism , Geotrichum/metabolism , Saccharum/metabolism , Bioreactors , Geotrichum/enzymology , Glucose/metabolism , Hydrolysis , Xylose/metabolism
9.
Polymers (Basel) ; 11(3)2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30960479

ABSTRACT

The fabrication of superadsorbent for dye adsorption is a hot research area at present. However, the development of low-cost and highly efficient superadsorbents against toxic textile dyes is still a big challenge. Here, we fabricated hydrophobic cellulose nanofiber aerogels from cellulose nanofibers through an eco-friendly silanization reaction in liquid phase, which is an extremely efficient, rapid, cheap, and environmentally friendly procedure. Moreover, the demonstrated eco-friendly silanization technique is easy to commercialize at the industrial level. Most of the works that have reported on the hydrophobic cellulose nanofiber aerogels explored their use for the elimination of oil from water. The key novelty of the present work is that the demonstrated hydrophobic cellulose nanofibers aerogels could serve as superadsorbents against toxic textile dyes such as crystal violet dye from water and insulating materials for building applications. Here, we make use of the possible hydrophobic interactions between silane-modified cellulose nanofiber aerogel and crystal violet dye for the removal of the crystal violet dye from water. With a 10 mg/L of crystal violet (CV) aqueous solution, the silane-modified cellulose nanofiber aerogel showed a high adsorption capacity value of 150 mg/g of the aerogel. The reason for this adsorption value was due to the short-range hydrophobic interaction between the silane-modified cellulose nanofiber aerogel and the hydrophobic domains in crystal violet dye molecules. Additionally, the fabricated silane-modified cellulose nanofiber hydrophobic aerogels exhibited a lower thermal conductivity value of 0.037 W·m-1 K-1, which was comparable to and lower than the commercial insulators such as mineral wools (0.040 W·m-1 K-1) and polystyrene foams (0.035 W·m-1 K-1). We firmly believe that the demonstrated silane-modified cellulose nanofiber aerogel could yield an eco-friendly adsorbent that is agreeable to adsorbing toxic crystal violet dyes from water as well as active building thermal insulators.

10.
Appl Biochem Biotechnol ; 189(1): 37-48, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30863986

ABSTRACT

This study evaluated the production of lignocellulose-degrading enzymes by solid-state fermentation (SSF) using a microbial consortium of Aspergillus fumigatus SCBM6 and A. niger SCBM1 (AFN extract). The fungal strains were cultivated in sugarcane bagasse (SCB) and wheat bran (WB) as lignocellulosic substrates for 7 days at 30 °C. After SSF, the highest peaks of enzyme production were 150 and 80 U g-1 for ß-xylosidase and ß-glucosidase at 48 h, 375 U g-1 for xylanase at 96 h, and 80 U g-1 for endoglucanase and 4 U g-1 for cellulase activity on filter paper (FPase) at 144 h. The efficiency of the produced AFN extract was investigated in the enzymatic hydrolysis of crude biomass sorghum (BS) and after the removal of extractives (ES). After saccharification, the glucose and xylose concentrations were 10× superior in ES than in BS hydrolysate (2.5 g L-1 after 12 h). The presence of inhibitors of alcoholic fermentation, such as formic acid, was also reduced in ES hydrolysates, indicating that the removal of extractives positively contributed to the effectiveness of enzymatic hydrolysis of biomass sorghum using AFN extract.


Subject(s)
Aspergillus fumigatus/metabolism , Aspergillus niger/metabolism , Biomass , Cellulose/metabolism , Sorghum/metabolism , Sugars/chemistry , Xylosidases/metabolism , beta-Galactosidase/metabolism , Aspergillus fumigatus/enzymology , Aspergillus niger/enzymology , Hydrolysis , Species Specificity
11.
Carbohydr Polym ; 202: 203-210, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30286993

ABSTRACT

The aim of this study was to investigate the antioxidant, mechanical and physical properties of a new film-based polymeric blend of hydrocolloids obtained from the aqueous extraction of chia seeds (source antioxidants) and apple pectin. The individual matrices films were brittle and rigid with poor mechanical properties. The blends formulations contributed to improved mechanical properties regarding workability and resistance. The antioxidant results showed the potential hydrocolloid from chia seeds as natural source of antioxidant in these polymeric films. The formulation 3 (14(hydrocolloid):41(pectin):25(glycerol):20(glutaraldehyde) displayed well thermal, mechanical, morphological and antioxidant properties, suggesting their great potential for food packaging.

12.
ACS Appl Mater Interfaces ; 10(23): 20032-20043, 2018 Jun 13.
Article in English | MEDLINE | ID: mdl-29812890

ABSTRACT

A series of flexible, lightweight, and highly conductive cellulose nanopapers were fabricated through in situ polymerization of aniline monomer on to cellulose nanofibers with a rationale for attenuating electromagnetic radiations within 8.2-12.4 GHz (X band). The demonstrated paper exhibits good conductivity due to the formation of a continuous coating of polyaniline (PANI) over the cellulose nanofibers (CNF) during in situ polymerization, which is evident from scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analysis. The free hydroxyl groups on the surface of nanocellulose fibers promptly form intermolecular hydrogen bonding with PANI, which plays a vital role in shielding electromagnetic radiations and makes the cellulose nanopapers even more robust. These composite nanopapers exhibited an average shielding effectiveness of ca. -23 dB (>99% attenuation) at 8.2 GHz with 1 mm paper thickness. The fabricated papers exhibited an effective attenuation of electromagnetic waves by a predominant absorption mechanism (ca. 87%) rather than reflection (ca. 13%), which is highly desirable for the present-day telecommunication sector. Unlike metal-based shields, these demonstrated PANI/CNF papers have given a new platform for designing green microwave attenuators via an absorption mechanism. The prime novelty of the present study is that these robust PANI/CNF nanopapers have the ability to attenuate incoming microwave radiations to an extent that is 360% higher than the shielding effectiveness value reported in the previous literature. This makes them suitable for use in commercial electronic gadgets. This demonstrated work also opens up new avenues for using cellulose nanofibers as an effective substrate for fabricating conductive flexible papers using polyaniline. The direct current conductivity value of PANI/CNF nanopaper was 0.314 S/cm, which is one of the key requisites for the fabrication of efficient electromagnetic shields. Nevertheless, such nanopapers also open up an arena of applications such as electrodes for supercapacitors, separators for Li-S, Li-polymer batteries, and other freestanding flexible paper-based devices.

13.
Carbohydr Polym ; 153: 143-152, 2016 Nov 20.
Article in English | MEDLINE | ID: mdl-27561481

ABSTRACT

Cellulose nanocrystals (CNCs) were isolated from soy hulls by acid sulfuric hydrolysis. The resulting CNCs were characterized using TEM, AFM, WAXS, elemental analysis and TGA. The CNCs have a high crystallinity, specific surface area and aspect ratio. The aspect ratio (around 100) is the largest ever reported in the literature for a plant cellulose source. These CNCs were used as a reinforcing phase to prepare nanocomposite films by casting/evaporation using natural rubber as matrix. The mechanical properties were studied in both the linear and non-linear ranges. The reinforcing effect was higher than the one observed for CNCs extracted from other sources. It may be assigned not only to the high aspect ratio of these CNCs but also to the stiffness of the percolating nanoparticle network formed within the polymer matrix. Moreover, the sedimentation of CNCs during the evaporation step was found to play a crucial role on the mechanical properties.


Subject(s)
Cellulose/chemistry , Glycine max/chemistry , Nanocomposites/chemistry , Rubber/chemistry , Cellulose/ultrastructure , Elasticity , Hydrolysis , Nanocomposites/ultrastructure , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Tensile Strength , Viscosity
14.
J Environ Manage ; 121: 202-9, 2013 May 30.
Article in English | MEDLINE | ID: mdl-23542530

ABSTRACT

Mango seeds are lignocellulosic agro-industrial residues available in large quantities in tropical countries and are simply discarded or used as animal feed. They are a natural and renewable resource, and were used to generate new polymeric materials in this work. This new materials can be used as alternatives to fossil resources such as petroleum. This work aimed to extract and characterize cellulose nanocrystals (CN) from mango seed by acid hydrolysis to obtain a material suitable as a reinforcing agent in the manufacturing of nanocomposites. The fibers of mango seeds were ground in mills and purified mainly to remove lignin. The raw mango seed (MS) and the purified mango seed (PMS) were analyzed for chemical composition and characterized by infrared and X-rays. Cellulose nanocrystals from the mango seed (CNM) were isolated by acid hydrolysis at 40 °C for 10 min, with 20 ml of H2SO4 (11.21 M) used for every gram of cellulose. The yield at this step was 22.8%. CNM were needle-shaped, with high crystallinity (90.6%), good thermal stability (around 248 °C), a medium length (L) of 123.4 ± 22.1 nm and a diameter (D) of 4.59 ± 2.22 nm, giving an aspect ratio (L/D) of about 34.1 ± 18.6. The diameter measurements of CNM were also confirmed by Scherrer's equation. This work also aimed to reuse mango seed produced as industrial waste, giving it a useful application and preventing its role as an environmental pollutant.


Subject(s)
Cellulose/chemistry , Mangifera/chemistry , Seeds/chemistry , Cellulose/isolation & purification , Hydrolysis , Microscopy, Electron, Transmission , Nanocomposites/chemistry , Nanoparticles/chemistry , Sulfuric Acids/chemistry , Thermogravimetry , X-Ray Diffraction
15.
Biomacromolecules ; 12(9): 3223-31, 2011 Sep 12.
Article in English | MEDLINE | ID: mdl-21766835

ABSTRACT

The concern related to the environmental degradation and to the exhaustion of natural resources has induced the research on biodegradable materials obtained from renewable sources, which involves fundamental properties and general application. In this context, we have fabricated thin films of lignins, which were extracted from sugar cane bagasse via modified organosolv process using ethanol as organic solvent. The films were made using the vacuum thermal evaporation technique (PVD, physical vapor deposition) grown up to 120 nm. The main objective was to explore basic properties such as electrical and surface morphology and the sensing performance of these lignins as transducers. The PVD film growth was monitored via ultraviolet-visible (UV-vis) absorption spectroscopy and quartz crystal microbalance, revealing a linear relationship between absorbance and film thickness. The 120 nm lignin PVD film morphology presented small aggregates spread all over the film surface on the nanometer scale (atomic force microscopy, AFM) and homogeneous on the micrometer scale (optical microscopy). The PVD films were deposited onto Au interdigitated electrode (IDE) for both electrical characterization and sensing experiments. In the case of electrical characterization, current versus voltage (I vs V) dc measurements were carried out for the Au IDE coated with 120 nm lignin PVD film, leading to a conductivity of 3.6 × 10(-10) S/m. Using impedance spectroscopy, also for the Au IDE coated with the 120 nm lignin PVD film, dielectric constant of 8.0, tan δ of 3.9 × 10(-3), and conductivity of 1.75 × 10(-9) S/m were calculated at 1 kHz. As a proof-of-principle, the application of these lignins as transducers in sensing devices was monitored by both impedance spectroscopy (capacitance vs frequency) and I versus time dc measurements toward aniline vapor (saturated atmosphere). The electrical responses showed that the sensing units are sensible to aniline vapor with the process being reversible. AFM images conducted directly onto the sensing units (Au IDE coated with 120 nm lignin PVD film) before and after the sensing experiments showed a decrease in the PVD film roughness from 5.8 to 3.2 nm after exposing to aniline.


Subject(s)
Biosensing Techniques , Chemistry Techniques, Analytical , Lignin/chemistry , Saccharum/chemistry , Aniline Compounds/analysis , Cellulose/chemistry , Dielectric Spectroscopy , Electric Conductivity , Electrodes , Gases , Gold/chemistry , Membranes, Artificial , Microscopy, Atomic Force , Quartz Crystal Microbalance Techniques , Surface Properties , Transducers
16.
J Colloid Interface Sci ; 295(1): 79-83, 2006 Mar 01.
Article in English | MEDLINE | ID: mdl-16125715

ABSTRACT

The surface chemical modification of microcrystalline cellulose and cellulose fibers obtained from different sugar cane bagasse pulping processes, viz. Kraft, organosolv ethanol/water and organosolv/supercritical carbon dioxide, were studied in heterogeneous conditions using modest amounts of octadecanoyl and dodecanoyl chloride. The ensuing surfaces acquired a non-polar character, suitable for incorporating these fibers as reinforcing agents in composite materials based on polymeric matrices. The success of these chemical modifications was assessed by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, elemental analysis, scanning electron microscopy (SEM) and contact angle measurements. In particular, the dynamic and equilibrium contact angle measurements, before and after the treatments, revealed that the value of the polar component (gamma(s)p) of the surface energy had decreased very considerably following the modification.


Subject(s)
Cellulose/analogs & derivatives , Cellulose/chemistry , Cellulose/ultrastructure , Esterification , Microscopy, Electron, Scanning , Scattering, Radiation , Spectroscopy, Fourier Transform Infrared , Surface Properties , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...