Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Brain ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940350

ABSTRACT

In frontotemporal lobar degeneration (FTLD), pathological protein aggregation in specific brain regions is associated with declines in human-specialized social-emotional and language functions. In most patients, disease protein aggregates contain either TDP-43 (FTLD-TDP) or tau (FTLD-tau). Here, we explored whether FTLD-associated regional degeneration patterns relate to regional gene expression of human accelerated regions (HARs), conserved sequences that have undergone positive selection during recent human evolution. To this end, we used structural neuroimaging from patients with FTLD and human brain regional transcriptomic data from controls to identify genes expressed in FTLD-targeted brain regions. We then integrated primate comparative genomic data to test our hypothesis that FTLD targets brain regions linked to expression levels of recently evolved genes. In addition, we asked whether genes whose expression correlates with FTLD atrophy are enriched for genes that undergo cryptic splicing when TDP-43 function is impaired. We found that FTLD-TDP and FTLD-tau subtypes target brain regions with overlapping and distinct gene expression correlates, highlighting many genes linked to neuromodulatory functions. FTLD atrophy-correlated genes were strongly enriched for HARs. Atrophy-correlated genes in FTLD-TDP showed greater overlap with TDP-43 cryptic splicing genes and genes with more numerous TDP-43 binding sites compared with atrophy-correlated genes in FTLD-tau. Cryptic splicing genes were enriched for HAR genes, and vice versa, but this effect was due to the confounding influence of gene length. Analyses performed at the individual-patient level revealed that the expression of HAR genes and cryptically spliced genes within putative regions of disease onset differed across FTLD-TDP subtypes.

2.
Article in English | MEDLINE | ID: mdl-38849218

ABSTRACT

OBJECTIVE: Affective symptoms such as anxiety, low mood, and loneliness are prevalent and highly debilitating symptoms among older adults (OA). Serotonergic psychedelics are currently investigated as novel interventions for affective disorders, yet little is known regarding their effects in OA. We investigated the mental health effects and psychological mechanisms of guided psychedelic group experiences in OA and a matched sample of younger adults (YA). METHODS: Using a prospective observational cohort design, we identified 62 OA (age ≥60 years) and 62 matched YA who completed surveys two weeks before, a day, two weeks, four weeks, and six months after a psychedelic group session. Mixed linear regression analyses were used to investigate longitudinal well-being changes, as well as baseline, acute, and post-acute predictors of change. RESULTS: OA showed post-psychedelic well-being improvements similar to matched YA. Among baseline predictors, presence of a lifetime psychiatric diagnosis was associated with greater well-being increases in OA (B = 6.72, p = .016 at the four-week key-endpoint). Compared to YA, acute subjective psychedelic effects were less intense in OA and did not significantly predict prospective well-being changes. However, relational experiences before and after psychedelic sessions emerged as predictors in OA (r(36) = .37,p = 0.025). CONCLUSIONS: Guided psychedelic group sessions enhance well-being in OA in line with prior naturalistic and controlled studies in YA. Interestingly, acute psychedelic effects in OA are attenuated and less predictive of well-being improvements, with relational experiences related to the group setting playing a more prominent role. Our present findings call for further research on the effects of psychedelics in OA.

3.
Res Sq ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38496492

ABSTRACT

Affective symptoms such as anxiety, low mood, and loneliness are prevalent and highly debilitating symptoms among older adults (OA). Serotonergic psychedelics are novel experimental interventions for affective disorders, yet little is known regarding their effects in OA. Using a prospective cohort design, we identified 62 OA (age ≥ 60 years) and 62 matched younger adults (YA) who completed surveys two weeks before, and one day, two weeks, four weeks, and six months after a guided psychedelic group session in a retreat setting. Mixed linear regression analyses revealed significant well-being improvements in OA and YA, amplified in OA with a history of a psychiatric diagnosis. Compared to YA, acute subjective psychedelic effects were attenuated in OA and did not significantly predict well-being changes. However, a psychosocial measure of Communitas emerged as a predictor in OA, suggesting that the relational components in psychedelic group settings may hold particular value for OA.

4.
bioRxiv ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38464275

ABSTRACT

N,N-Dimethyltryptamine (DMT) is a serotonergic psychedelic, known to rapidly induce short-lasting alterations in conscious experience, characterized by a profound and immersive sense of physical transcendence alongside rich and vivid auditory distortions and visual imagery. Multimodal neuroimaging data paired with dynamic analysis techniques offer a valuable approach for identifying unique signatures of brain activity - and linked autonomic physiology - naturally unfolding during the altered state of consciousness induced by DMT. We leveraged simultaneous fMRI and EKG data acquired in 14 healthy volunteers prior to, during, and after intravenous administration of DMT, and, separately, placebo. fMRI data was preprocessed to derive individual dynamic activity matrices, reflecting the similarity of brain activity in time, and community detection algorithms were applied on these matrices to identify brain activity substates; EKG data was used to derive continuous heart rate. We identified a brain substate occurring immediately after DMT injection, characterized by increased superior temporal lobe activity, and hippocampal and medial parietal deactivations under DMT. Results revealed that hippocampus and medial parietal cortex hypoactivity correlated with scores of meaningfulness of the experience. During this first post-injection substate, increased heart rate under DMT correlated negatively with the meaningfulness of the experience and positively with hippocampus/medial parietal deactivation. These results suggest a chain of influence linking sympathetic regulation to hippocampal and medial parietal deactivations under DMT, which combined, may contribute to positive mental health outcomes related to self-referential processing following psychedelic administration.

5.
bioRxiv ; 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38106054

ABSTRACT

Cognitive and behavioral deficits in Alzheimer's disease (AD) and frontotemporal dementia (FTD) result from brain atrophy and altered functional connectivity. However, it is unclear how atrophy relates to functional connectivity disruptions across dementia subtypes and stages. We addressed this question using structural and functional MRI from 221 patients with AD (n=82), behavioral variant FTD (n=41), corticobasal syndrome (n=27), nonfluent (n=34) and semantic (n=37) variant primary progressive aphasia, and 100 cognitively normal individuals. Using partial least squares regression, we identified three principal structure-function components. The first component showed overall atrophy correlating with primary cortical hypo-connectivity and subcortical/association cortical hyper-connectivity. Components two and three linked focal syndrome-specific atrophy to peri-lesional hypo-connectivity and distal hyper-connectivity. Structural and functional component scores predicted global and domain-specific cognitive deficits. Anatomically, functional connectivity changes reflected alterations in specific brain activity gradients. Eigenmode analysis identified temporal phase and amplitude collapse as an explanation for atrophy-driven functional connectivity changes.

6.
medRxiv ; 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37961381

ABSTRACT

In frontotemporal lobar degeneration (FTLD), pathological protein aggregation is associated with a decline in human-specialized social-emotional and language functions. Most disease protein aggregates contain either TDP-43 (FTLD-TDP) or tau (FTLD-tau). Here, we explored whether FTLD targets brain regions that express genes containing human accelerated regions (HARs), conserved sequences that have undergone positive selection during recent human evolution. To this end, we used structural neuroimaging from patients with FTLD and normative human regional transcriptomic data to identify genes expressed in FTLD-targeted brain regions. We then integrated primate comparative genomic data to test our hypothesis that FTLD targets brain regions expressing recently evolved genes. In addition, we asked whether genes expressed in FTLD-targeted brain regions are enriched for genes that undergo cryptic splicing when TDP-43 function is impaired. We found that FTLD-TDP and FTLD-tau subtypes target brain regions that express overlapping and distinct genes, including many linked to neuromodulatory functions. Genes whose normative brain regional expression pattern correlated with FTLD cortical atrophy were strongly associated with HARs. Atrophy-correlated genes in FTLD-TDP showed greater overlap with TDP-43 cryptic splicing genes compared with atrophy-correlated genes in FTLD-tau. Cryptic splicing genes were enriched for HAR genes, and vice versa, but this effect was due to the confounding influence of gene length. Analyses performed at the individual-patient level revealed that the expression of HAR genes and cryptically spliced genes within putative regions of disease onset differed across FTLD-TDP subtypes. Overall, our findings suggest that FTLD targets brain regions that have undergone recent evolutionary specialization and provide intriguing potential leads regarding the transcriptomic basis for selective vulnerability in distinct FTLD molecular-anatomical subtypes.

7.
Ann Neurol ; 94(4): 632-646, 2023 10.
Article in English | MEDLINE | ID: mdl-37431188

ABSTRACT

OBJECTIVE: Microtubule-associated protein tau (MAPT) mutations cause frontotemporal lobar degeneration, and novel biomarkers are urgently needed for early disease detection. We used task-free functional magnetic resonance imaging (fMRI) mapping, a promising biomarker, to analyze network connectivity in symptomatic and presymptomatic MAPT mutation carriers. METHODS: We compared cross-sectional fMRI data between 17 symptomatic and 39 presymptomatic carriers and 81 controls with (1) seed-based analyses to examine connectivity within networks associated with the 4 most common MAPT-associated clinical syndromes (ie, salience, corticobasal syndrome, progressive supranuclear palsy syndrome, and default mode networks) and (2) whole-brain connectivity analyses. We applied K-means clustering to explore connectivity heterogeneity in presymptomatic carriers at baseline. Neuropsychological measures, plasma neurofilament light chain, and gray matter volume were compared at baseline and longitudinally between the presymptomatic subgroups defined by their baseline whole-brain connectivity profiles. RESULTS: Symptomatic and presymptomatic carriers had connectivity disruptions within MAPT-syndromic networks. Compared to controls, presymptomatic carriers showed regions of connectivity alterations with age. Two presymptomatic subgroups were identified by clustering analysis, exhibiting predominantly either whole-brain hypoconnectivity or hyperconnectivity at baseline. At baseline, these two presymptomatic subgroups did not differ in neuropsychological measures, although the hypoconnectivity subgroup had greater plasma neurofilament light chain levels than controls. Longitudinally, both subgroups showed visual memory decline (vs controls), yet the subgroup with baseline hypoconnectivity also had worsening verbal memory and neuropsychiatric symptoms, and extensive bilateral mesial temporal gray matter decline. INTERPRETATION: Network connectivity alterations arise as early as the presymptomatic phase. Future studies will determine whether presymptomatic carriers' baseline connectivity profiles predict symptomatic conversion. ANN NEUROL 2023;94:632-646.


Subject(s)
Frontotemporal Dementia , tau Proteins , Humans , Cross-Sectional Studies , tau Proteins/genetics , Brain/diagnostic imaging , Mutation/genetics , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging , Frontotemporal Dementia/genetics , Biomarkers
8.
JAMA Neurol ; 80(4): 377-387, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36848111

ABSTRACT

Importance: The neurological substrates of visual artistic creativity (VAC) are unknown. VAC is demonstrated here to occur early in frontotemporal dementia (FTD), and multimodal neuroimaging is used to generate a novel mechanistic hypothesis involving dorsomedial occipital cortex enhancement. These findings may illuminate a novel mechanism underlying human visual creativity. Objective: To determine the anatomical and physiological underpinnings of VAC in FTD. Design, Setting, and Participants: This case-control study analyzed records of 689 patients who met research criteria for an FTD spectrum disorder between 2002 and 2019. Individuals with FTD and emergence of visual artistic creativity (VAC-FTD) were matched to 2 control groups based on demographic and clinical parameters: (1) not visually artistic FTD (NVA-FTD) and (2) healthy controls (HC). Analysis took place between September 2019 to December 2021. Main Outcomes and Measures: Clinical, neuropsychological, genetic, and neuroimaging data were analyzed to characterize VAC-FTD and compare VAC-FTD with control groups. Results: Of 689 patients with FTD, 17 (2.5%) met VAC-FTD inclusion criteria (mean [SD] age, 65 [9.7] years; 10 [58.8%] female). NVA-FTD (n = 51; mean [SD] age, 64.8 [7] years; 25 [49.0%] female) and HC (n = 51; mean [SD] age, 64.5 [7.2] years; 25 [49%] female) groups were well matched to VAC-FTD demographically. Emergence of VAC occurred around the time of onset of symptoms and was disproportionately seen in patients with temporal lobe predominant degeneration (8 of 17 [47.1%]). Atrophy network mapping identified a dorsomedial occipital region whose activity inversely correlated, in healthy brains, with activity in regions found within the patient-specific atrophy patterns in VAC-FTD (17 of 17) and NVA-FTD (45 of 51 [88.2%]). Structural covariance analysis revealed that the volume of this dorsal occipital region was strongly correlated in VAC-FTD, but not in NVA-FTD or HC, with a volume in the primary motor cortex corresponding to the right-hand representation. Conclusions and Relevance: This study generated a novel hypothesis about the mechanisms underlying the emergence of VAC in FTD. These findings suggest that early lesion-induced activation of dorsal visual association areas may predispose some patients to the emergence of VAC under certain environmental or genetic conditions. This work sets the stage for further exploration of enhanced capacities arising early in the course of neurodegeneration.


Subject(s)
Frontotemporal Dementia , Humans , Female , Aged , Middle Aged , Male , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Creativity , Case-Control Studies , Prevalence , Atrophy , Magnetic Resonance Imaging
9.
Article in English | MEDLINE | ID: mdl-36754677

ABSTRACT

BACKGROUND: Treatment-resistant depression (TRD) refers to patients with major depressive disorder who do not remit after 2 or more antidepressant trials. TRD is common and highly debilitating, but its neurobiological basis remains poorly understood. Recent neuroimaging studies have revealed cortical connectivity gradients that dissociate primary sensorimotor areas from higher-order associative cortices. This fundamental topography determines cortical information flow and is affected by psychiatric disorders. We examined how TRD impacts gradient-based hierarchical cortical organization. METHODS: In this secondary study, we analyzed resting-state functional magnetic resonance imaging data from a mindfulness-based intervention enrolling 56 patients with TRD and 28 healthy control subjects. Using gradient extraction tools, baseline measures of cortical gradient dispersion within and between functional brain networks were derived, compared across groups, and associated with graph theoretical measures of network topology. In patients, correlation analyses were used to associate measures of cortical gradient dispersion with clinical measures of anxiety, depression, and mindfulness at baseline and following the intervention. RESULTS: Cortical gradient dispersion was reduced within major intrinsic brain networks in patients with TRD. Reduced cortical gradient dispersion correlated with increased network degree assessed through graph theory-based measures of network topology. Lower dispersion among default mode, control, and limbic network nodes related to baseline levels of trait anxiety, depression, and mindfulness. Patients' baseline limbic network dispersion predicted trait anxiety scores 24 weeks after the intervention. CONCLUSIONS: Our findings provide preliminary support for widespread alterations in cortical gradient architecture in TRD, implicating a significant role for transmodal and limbic networks in mediating depression, anxiety, and lower mindfulness in patients with TRD.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/drug therapy , Magnetic Resonance Imaging/methods , Brain , Cerebral Cortex , Antidepressive Agents/therapeutic use
10.
Psychophysiology ; 60(4): e14218, 2023 04.
Article in English | MEDLINE | ID: mdl-36371680

ABSTRACT

The outflow of the autonomic nervous system (ANS) is continuous and dynamic, but its functional organization is not well understood. Whether ANS patterns accompany emotions, or arise in basal physiology, remain unsettled questions in the field. Here, we searched for brief ANS patterns amidst continuous, multichannel physiological recordings in 45 healthy older adults. Participants completed an emotional reactivity task in which they viewed video clips that elicited a target emotion (awe, sadness, amusement, disgust, or nurturant love); each video clip was preceded by a pre-trial baseline period and followed by a post-trial recovery period. Participants also sat quietly for a separate 2-min resting period to assess basal physiology. Using principal components analysis and unsupervised clustering algorithms to reduce the second-by-second physiological data during the emotional reactivity task, we uncovered five ANS states. Each ANS state was characterized by a unique constellation of patterned physiological changes that differentiated among the trials of the emotional reactivity task. These ANS states emerged and dissipated over time, with each instance lasting several seconds on average. ANS states with similar structures were also detectable in the resting period but were intermittent and of smaller magnitude. Our results offer new insights into the functional organization of the ANS. By assembling short-lived, patterned changes, the ANS is equipped to generate a wide range of physiological states that accompany emotions and that contribute to the architecture of basal physiology.


Subject(s)
Autonomic Nervous System , Disgust , Humans , Aged , Autonomic Nervous System/physiology , Emotions/physiology , Love , Sadness
11.
Neuroimage ; 261: 119526, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35914669

ABSTRACT

The human brain exhibits a diverse yet constrained range of activity states. While these states can be faithfully represented in a low-dimensional latent space, our understanding of the constitutive functional anatomy is still evolving. Here we applied dimensionality reduction to task-free and task fMRI data to address whether latent dimensions reflect intrinsic systems and if so, how these systems may interact to generate different activity states. We find that each dimension represents a dynamic activity gradient, including a primary unipolar sensory-association gradient underlying the global signal. The gradients appear stable across individuals and cognitive states, while recapitulating key functional connectivity properties including anticorrelation, modularity, and regional hubness. We then use dynamical systems modeling to show that gradients causally interact via state-specific coupling parameters to create distinct brain activity patterns. Together, these findings indicate that a set of dynamic, intrinsic spatial gradients interact to determine the repertoire of possible brain activity states.


Subject(s)
Brain , Nerve Net , Brain/diagnostic imaging , Brain Mapping/methods , Humans , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging
12.
Alzheimers Dement (Amst) ; 14(1): e12318, 2022.
Article in English | MEDLINE | ID: mdl-35664889

ABSTRACT

Introduction: Numerous studies have reported brain alterations in behavioral variant frontotemporal dementia (bvFTD). However, they pointed to inconsistent findings. Methods: We used a meta-analytic approach to identify the convergent structural and functional brain abnormalities in bvFTD. Following current best-practice neuroimaging meta-analysis guidelines, we searched PubMed and Embase databases and performed reference tracking. Then, the coordinates of group comparisons between bvFTD and controls from 73 studies were extracted and tested for convergence using activation likelihood estimation. Results: We identified convergent abnormalities in the anterior cingulate cortices, anterior insula, amygdala, paracingulate, striatum, and hippocampus. Task-based and resting-state functional connectivity pointed to the networks that are connected to the obtained consistent regions. Functional decoding analyses suggested associated dysfunction of emotional processing, interoception, reward processing, higher-order cognitive functions, and olfactory and gustatory perceptions in bvFTD. Discussion: Our findings highlighted the key role of the salience network and subcortical regions in the pathophysiology of bvFTD.

13.
Brain Pathol ; 31(2): 267-282, 2021 03.
Article in English | MEDLINE | ID: mdl-33314436

ABSTRACT

Polymorphisms in TMEM106B, a gene on chromosome 7p21.3 involved in lysosomal trafficking, correlates to worse neuropathological, and clinical outcomes in frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) with TDP-43 inclusions. In a small cohort of C9orf72 expansion carriers, we previously found an atypical, neuroglial tauopathy in cases harboring a TMEM106B rs1990622 A/A genotype. To test whether TMEM106B genotype affects the risk of developing atypical tauopathy under a recessive genotype model (presence versus absence of two major alleles: A/A vs. A/G and G/G). We characterized the atypical tauopathy neuropathologically and determined its frequency by TMEM106B rs1990622 genotypes in 90 postmortem cases with a primary diagnosis of FTLD/ALS-TDP [mean age at death 65.5 years (±8.1), 40% female]. We investigated the effect of this new atypical tauopathy on demographics and clinical and neuropsychological metrics. We also genotyped TMEM106B in an independent series with phenotypically similar cases. Sixteen cases (16/90, 17.7 %) showed the temporal-predominant neuro-astroglial tauopathy, and 93.7% of them carried an A/A genotype (vs. ~35% in a population cohort). The odds ratio of FTLD/ALS-TDP individuals with the A/A genotype showing neuro-astroglial tauopathy was 13.9. Individuals with this tauopathy were older at onset (p = 0.01). The validation cohort had a similarly high proportion of rs1990622 A/A genotype. TDP-43 and tau changes co-occur in a subset of neurons. Our data add to the growing body of evidence that TMEM106B polymorphisms may modulate neurodegeneration. A distinctive medial temporal predominant, 4-repeat, neuro-astroglial tauopathy strongly correlates to TMEM106B A/A genotype in FTLD/ALS-TDP cases.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Astrocytes/pathology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Neurons/pathology , Aged , Female , Genotype , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide
14.
Hum Brain Mapp ; 42(13): 4134-4143, 2021 09.
Article in English | MEDLINE | ID: mdl-30697878

ABSTRACT

A prominent finding of postmortem and molecular imaging studies on Alzheimer's disease (AD) is the accumulation of neuropathological proteins in brain regions of the default mode network (DMN). Molecular models suggest that the progression of disease proteins depends on the directionality of signaling pathways. At network level, effective connectivity (EC) reflects directionality of signaling pathways. We hypothesized a specific pattern of EC in the DMN of patients with AD, related to cognitive impairment. Metabolic connectivity mapping is a novel measure of EC identifying regions of signaling input based on neuroenergetics. We simultaneously acquired resting-state functional MRI and FDG-PET data from patients with early AD (n = 35) and healthy subjects (n = 18) on an integrated PET/MR scanner. We identified two distinct subnetworks of EC in the DMN of healthy subjects: an anterior part with bidirectional EC between hippocampus and medial prefrontal cortex and a posterior part with predominant input into medial parietal cortex. Patients had reduced input into the medial parietal system and absent input from hippocampus into medial prefrontal cortex (p < 0.05, corrected). In a multiple linear regression with unimodal imaging and EC measures (F4,25 = 5.63, p = 0.002, r2 = 0.47), we found that EC (ß = 0.45, p = 0.012) was stronger associated with cognitive deficits in patients than any of the PET and fMRI measures alone. Our approach indicates specific disruptions of EC in the DMN of patients with AD and might be suitable to test molecular theories about downstream and upstream spreading of neuropathology in AD.


Subject(s)
Alzheimer Disease/diagnostic imaging , Cerebral Cortex , Connectome/methods , Default Mode Network , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Positron-Emission Tomography/methods , Aged , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/metabolism , Cerebral Cortex/physiopathology , Default Mode Network/diagnostic imaging , Default Mode Network/metabolism , Default Mode Network/physiopathology , Humans
15.
Cereb Cortex ; 30(10): 5387-5399, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32500143

ABSTRACT

Each neurodegenerative syndrome reflects a stereotyped pattern of cellular, regional, and large-scale brain network degeneration. In behavioral variant of frontotemporal dementia (bvFTD), a disorder of social-emotional function, von Economo neurons (VENs), and fork cells are among the initial neuronal targets. These large layer 5 projection neurons are concentrated in the anterior cingulate and frontoinsular (FI) cortices, regions that anchor the salience network, a large-scale system linked to social-emotional function. Here, we studied patients with bvFTD, amyotrophic lateral sclerosis (ALS), or both, given that these syndromes share common pathobiological and genetic factors. Our goal was to determine how neuron type-specific TAR DNA-binding protein of 43 kDa (TDP-43) pathobiology relates to atrophy in specific brain structures and to loss of emotional empathy, a cardinal feature of bvFTD. We combined questionnaire-based empathy assessments, in vivo structural MR imaging, and quantitative histopathological data from 16 patients across the bvFTD/ALS spectrum. We show that TDP-43 pathobiology within right FI VENs and fork cells is associated with salience network atrophy spanning insular, medial frontal, and thalamic regions. Gray matter degeneration within these structures mediated loss of emotional empathy, suggesting a chain of influence linking the cellular, regional/network, and behavioral levels in producing signature bvFTD clinical features.


Subject(s)
Brain/pathology , Empathy , Frontotemporal Dementia/pathology , Frontotemporal Dementia/psychology , Neurons/pathology , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/psychology , Atrophy , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neural Pathways/pathology , Neuropsychological Tests
16.
J Psychopharmacol ; 34(6): 623-635, 2020 06.
Article in English | MEDLINE | ID: mdl-32255395

ABSTRACT

BACKGROUND: Neuroimaging studies have just begun to explore the acute effects of psychedelics on large-scale brain networks' functional organization. Even less is known about the neural correlates of subacute effects taking place days after the psychedelic experience. This study explores the subacute changes of primary sensory brain networks and networks supporting higher-order affective and self-referential functions 24 hours after a single session with the psychedelic ayahuasca. METHODS: We leveraged task-free functional magnetic resonance imaging data 1 day before and 1 day after a randomized placebo-controlled trial exploring the effects of ayahuasca in naïve healthy participants (21 placebo/22 ayahuasca). We derived intra- and inter-network functional connectivity of the salience, default mode, visual, and sensorimotor networks, and assessed post-session connectivity changes between the ayahuasca and placebo groups. Connectivity changes were associated with Hallucinogen Rating Scale scores assessed during the acute effects. RESULTS: Our findings revealed increased anterior cingulate cortex connectivity within the salience network, decreased posterior cingulate cortex connectivity within the default mode network, and increased connectivity between the salience and default mode networks 1 day after the session in the ayahuasca group compared to placebo. Connectivity of primary sensory networks did not differ between groups. Salience network connectivity increases correlated with altered somesthesia scores, decreased default mode network connectivity correlated with altered volition scores, and increased salience default mode network connectivity correlated with altered affect scores. CONCLUSION: These findings provide preliminary evidence for subacute functional changes induced by the psychedelic ayahuasca on higher-order cognitive brain networks that support interoceptive, affective, and self-referential functions.


Subject(s)
Banisteriopsis/chemistry , Brain/drug effects , Hallucinogens/pharmacology , Magnetic Resonance Imaging , Adult , Brain/diagnostic imaging , Default Mode Network/diagnostic imaging , Default Mode Network/drug effects , Female , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/drug effects , Hallucinogens/administration & dosage , Humans , Male , Young Adult
17.
Netw Neurosci ; 4(1): 30-69, 2020.
Article in English | MEDLINE | ID: mdl-32043043

ABSTRACT

The brain is a complex, multiscale dynamical system composed of many interacting regions. Knowledge of the spatiotemporal organization of these interactions is critical for establishing a solid understanding of the brain's functional architecture and the relationship between neural dynamics and cognition in health and disease. The possibility of studying these dynamics through careful analysis of neuroimaging data has catalyzed substantial interest in methods that estimate time-resolved fluctuations in functional connectivity (often referred to as "dynamic" or time-varying functional connectivity; TVFC). At the same time, debates have emerged regarding the application of TVFC analyses to resting fMRI data, and about the statistical validity, physiological origins, and cognitive and behavioral relevance of resting TVFC. These and other unresolved issues complicate interpretation of resting TVFC findings and limit the insights that can be gained from this promising new research area. This article brings together scientists with a variety of perspectives on resting TVFC to review the current literature in light of these issues. We introduce core concepts, define key terms, summarize controversies and open questions, and present a forward-looking perspective on how resting TVFC analyses can be rigorously and productively applied to investigate a wide range of questions in cognitive and systems neuroscience.

18.
Neuroimage ; 208: 116425, 2020 03.
Article in English | MEDLINE | ID: mdl-31805382

ABSTRACT

The human anterior insula (aINS) is a topographically organized brain region, in which ventral portions contribute to socio-emotional function through limbic and autonomic connections, whereas the dorsal aINS contributes to cognitive processes through frontal and parietal connections. Open questions remain, however, regarding how aINS connectivity varies over time. We implemented a novel approach combining seed-to-whole-brain sliding-window functional connectivity MRI and k-means clustering to assess time-varying functional connectivity of aINS subregions. We studied three independent large samples of healthy participants and longitudinal datasets to assess inter- and intra-subject stability, and related aINS time-varying functional connectivity profiles to dispositional empathy. We identified four robust aINS time-varying functional connectivity modes that displayed both "state" and "trait" characteristics: while modes featuring connectivity to sensory regions were modulated by eye closure, modes featuring connectivity to higher cognitive and emotional processing regions were stable over time and related to empathy measures.


Subject(s)
Cerebral Cortex/physiology , Connectome/methods , Empathy/physiology , Psychosocial Functioning , Adult , Aged , Aged, 80 and over , Cluster Analysis , Cross-Sectional Studies , Datasets as Topic , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Young Adult
19.
Neuroimage ; 207: 116404, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31783114

ABSTRACT

In mammals, the hippocampus, entorhinal, perirhinal, and parahippocampal cortices (i.e., core regions of the human medial temporal lobes, MTL) are locally interlaced with the adjacent amygdala nuclei at the structural and functional levels. At the global brain level, the human MTL has been described as part of the default mode network and amygdala nuclei as parts of the salience network, with both networks collectively forming a large-scale brain system supporting allostatic-interoceptive functions. We hypothesized (i) that intrinsic functional connectivity of slow activity fluctuations would reveal human MTL subsystems locally extending to the amygdala; and (ii) that these extended local subsystems would be globally embedded in large-scale brain systems supporting allostatic-interoceptive functions. Capitalizing on resting-state fMRI data of three independent samples of cognitively healthy adults (one main and two replication samples: N â€‹= â€‹101, 60, and 29, respectively), we analyzed the functional connectivity of fluctuating ongoing BOLD-activity within and outside the amygdala-MTL in a data-driven way using masked independent component and dual-regression analyses. We found that at the local level, MTL subsystems extend to the amygdala and are functionally organized along the longitudinal amygdala-MTL axis. These subsystems are characterized by consistent involvement of amygdala, hippocampus, and entorhinal cortex, but variable participation of perirhinal and parahippocampal regions. At the global level, amygdala-MTL subsystems selectively connect to salience, thalamic-brainstem, and default mode networks - the major cortical and subcortical components of the allostatic-interoceptive system. These findings provide evidence for integrated amygdala-MTL subsystems in humans, which are embedded within a larger allostatic-interoceptive system.


Subject(s)
Amygdala/physiology , Brain/physiology , Nerve Net/physiology , Neural Pathways/physiology , Adult , Brain Mapping , Female , Hippocampus/physiology , Humans , Image Processing, Computer-Assisted/methods , Male , Temporal Lobe/physiology
20.
J Alzheimers Dis Rep ; 3(1): 103-112, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31259307

ABSTRACT

 The posteromedial cortex (PMC) and medial temporal lobes (MTL) are two brain regions particularly vulnerable in Alzheimer's disease (AD). We have reviewed the spatiotemporal patterns of amyloid-ß and tau accumulation, local MTL functional alterations and MTL-PMC network reconfiguration, and propose a model to relate these elements to each other. Functional and structural MTL-PMC disconnection happen concomitant with amyloid-ß plaques and neurofibrillary tau accumulation within these same regions. Ongoing disconnection is accompanied by dysfunctional intrinsic local MTL circuit hyperexcitability, which exacerbates across distinct clinical stages of AD. Our overarching model proposes a sequence of events relating the spatiotemporal patterns of amyloid-ß and tau accumulation to MTL-PMC disconnection and local MTL hyperexcitability. We hypothesize that cortical PMC amyloid-ß pathology induces long-range information processing deficits through functional and structural MTL-PMC dysconnectivity at early disease stages, which in turn drives local MTL circuit hyperexcitability. Intrinsic local MTL circuit hyperexcitability subsequently accelerates local age-related tau deposition, facilitating tau spread from the MTL to the PMC, eventually resulting in extensive structural degeneration of white and grey matter as the disease advances. We hope that the present model may inform future longitudinal studies needed to test the proposed sequence of events.

SELECTION OF CITATIONS
SEARCH DETAIL
...