Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732013

ABSTRACT

The orphan nuclear receptor ERRα is the most extensively researched member of the estrogen-related receptor family and holds a pivotal role in various functions associated with energy metabolism, especially in tissues characterized by high energy requirements, such as the heart, skeletal muscle, adipose tissue, kidney, and brain. Abscisic acid (ABA), traditionally acknowledged as a plant stress hormone, is detected and actively functions in organisms beyond the land plant kingdom, encompassing cyanobacteria, fungi, algae, protozoan parasites, lower Metazoa, and mammals. Its ancient, cross-kingdom role enables ABA and its signaling pathway to regulate cell responses to environmental stimuli in various organisms, such as marine sponges, higher plants, and humans. Recent advancements in understanding the physiological function of ABA and its mammalian receptors in governing energy metabolism and mitochondrial function in myocytes, adipocytes, and neuronal cells suggest potential therapeutic applications for ABA in pre-diabetes, diabetes, and cardio-/neuroprotection. The ABA/LANCL1-2 hormone/receptor system emerges as a novel regulator of ERRα expression levels and transcriptional activity, mediated through the AMPK/SIRT1/PGC-1α axis. There exists a reciprocal feed-forward transcriptional relationship between the LANCL proteins and transcriptional coactivators ERRα/PGC-1α, which may be leveraged using natural or synthetic LANCL agonists to enhance mitochondrial function across various clinical contexts.


Subject(s)
Abscisic Acid , ERRalpha Estrogen-Related Receptor , Energy Metabolism , Receptors, Estrogen , Receptors, Estrogen/metabolism , Humans , Animals , Abscisic Acid/metabolism , Signal Transduction , Transcription Factors/metabolism , Transcription Factors/genetics
2.
J Appl Toxicol ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605572

ABSTRACT

Asbestos fibres have been considered an environmental hazard for decades. However, little is known about the attempts of circulating immune cells to counteract their toxicity. We addressed the early effects of fibre-released soluble factors (i.e. heavy metals) in naïve immune cells, circulating immediately below the alveolar/endothelial cell layer. By comparison, the direct fibre effects on endotheliocytes were also studied since these cells are known to sustain inflammatory processes. The three mineral fibres analysed showed that mainly chrysotile (CHR) and erionite (ERI) were able to release toxic metals in extracellular media respect to crocidolite (CRO), during the first 24 h. Nevertheless, all three fibres were able to induce oxidative stress and genotoxic damage in indirectly challenged naïve THP-1 monocytes (separated by a membrane). Conversely, only CHR-released metal ions induced apoptosis, NF-κB activation, cytokines and CD163 gene overexpression, indicating a differentiation towards the M0 macrophage phenotype. On the other hand, all three mineral fibres in direct contact with HECV endothelial cells showed cytotoxic, genotoxic and apoptotic effects, cytokines and ICAM-I overexpression, indicating the ability of these cells to promote an inflammatory environment in the lung independently from the type of inhaled fibre. Our study highlights the different cellular responses to mineral fibres resulting from both the nature of the cells and their function, but also from the chemical-physical characteristics of the fibres. In conclusion, CHR represented the main pro-inflammatory trigger, able to recruit and activate circulating naïve monocytes, through its released metals, already in the first 24 h after inhalation.

3.
Pharmaceutics ; 15(12)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38140095

ABSTRACT

The lanthionine synthetase C-like (LANCL) proteins include LANCL2, which is expressed in the central nervous system (CNS) and in peripheral tissues. LANCL2 exhibits glutathionylation activity and is involved in the neutralization of reactive electrophiles. Several studies explored LANCL2 activation as a validated pharmacological target for diabetes and inflammatory bowel disease. In this context, LANCL2 was found to bind the natural product abscisic acid (ABA), whose pre-clinical effectiveness in different inflammatory diseases was reported in the literature. More recently, LANCL2 attracted more attention as a valuable resource in the field of neurodegenerative disorders. ABA was found to regulate neuro-inflammation and synaptic plasticity to enhance learning and memory, exhibiting promising neuroprotective effects. Up until now, a limited number of LANCL2 ligands are known; among them, BT-11 is the only compound patented and investigated for its anti-inflammatory properties. To guide the design of novel putative LANCL2 agonists, a computational study including molecular docking and long molecular dynamic (MD) simulations of both ABA and BT-11 was carried out. The results pointed out the main LANCL2 ligand chemical features towards the following virtual screening of a novel putative LANCL2 agonist (AR-42). Biochemical assays on rat H9c2 cardiomyocytes showed a similar, LANCL2-mediated stimulation by BT-11 and by AR-42 of the mitochondrial proton gradient and of the transcriptional activation of the AMPK/PGC-1α/Sirt1 axis, the master regulator of mitochondrial function, effects that are previously observed with ABA. These results may allow the development of LANCL2 agonists for the treatment of mitochondrial dysfunction, a common feature of chronic and degenerative diseases.

4.
Antioxidants (Basel) ; 12(9)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37759995

ABSTRACT

The cross-kingdom stress hormone abscisic acid (ABA) and its mammalian receptors LANCL1 and LANCL2 regulate the response of cardiomyocytes to hypoxia by activating NO generation. The overexpression of LANCL1/2 increases transcription, phosphorylation and the activity of eNOS and improves cell vitality after hypoxia/reoxygenation via the AMPK/PGC-1α axis. Here, we investigated whether the ABA/LANCL system also affects the mitochondrial oxidative metabolism and structural proteins. Mitochondrial function, cell cycle and the expression of cytoskeletal, contractile and ion channel proteins were studied in H9c2 rat cardiomyoblasts overexpressing or silenced by LANCL1 and LANCL2, with or without ABA. Overexpression of LANCL1/2 significantly increased, while silencing conversely reduced the mitochondrial number, OXPHOS complex I, proton gradient, glucose and palmitate-dependent respiration, transcription of uncoupling proteins, expression of proteins involved in cytoskeletal, contractile and electrical functions. These effects, and LANCL1/2-dependent NO generation, are mediated by transcription factor ERRα, upstream of the AMPK/PGC1-α axis and transcriptionally controlled by the LANCL1/2-ABA system. The ABA-LANCL1/2 hormone-receptor system controls fundamental aspects of cardiomyocyte physiology via an ERRα/AMPK/PGC-1α signaling axis and ABA-mediated targeting of this axis could improve cardiac function and resilience to hypoxic and dysmetabolic conditions.

5.
Int J Mol Sci ; 24(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36834900

ABSTRACT

The abscisic acid (ABA)/LANC-like protein 1/2 (LANCL1/2) hormone/receptor system regulates glucose uptake and oxidation, mitochondrial respiration, and proton gradient dissipation in myocytes. Oral ABA increases glucose uptake and the transcription of adipocyte browning-related genes in rodent brown adipose tissue (BAT). The aim of this study was to investigate the role of the ABA/LANCL system in human white and brown adipocyte thermogenesis. Immortalized human white and brown preadipocytes, virally infected to overexpress or silence LANCL1/2, were differentiated in vitro with or without ABA, and transcriptional and metabolic targets critical for thermogenesis were explored. The overexpression of LANCL1/2 increases, and their combined silencing conversely reduces mitochondrial number, basal, and maximal respiration rates; proton gradient dissipation; and the transcription of uncoupling genes and of receptors for thyroid and adrenergic hormones, both in brown and in white adipocytes. The transcriptional enhancement of receptors for browning hormones also occurs in BAT from ABA-treated mice, lacking LANCL2 but overexpressing LANCL1. The signaling pathway downstream of the ABA/LANCL system includes AMPK, PGC-1α, Sirt1, and the transcription factor ERRα. The ABA/LANCL system controls human brown and "beige" adipocyte thermogenesis, acting upstream of a key signaling pathway regulating energy metabolism, mitochondrial function, and thermogenesis.


Subject(s)
Abscisic Acid , Protons , Animals , Humans , Mice , Abscisic Acid/metabolism , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Energy Metabolism/genetics , Glucose/metabolism , Hormones/metabolism , Receptors, G-Protein-Coupled/metabolism , Thermogenesis/genetics , Uncoupling Protein 1/metabolism
6.
Antioxidants (Basel) ; 12(2)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36830052

ABSTRACT

Cancer cells fuel growth and energy demands by increasing their NAD+ biosynthesis dependency, which therefore represents an exploitable vulnerability for anti-cancer strategies. CD38 is a NAD+-degrading enzyme that has become crucial for anti-MM therapies since anti-CD38 monoclonal antibodies represent the backbone for treatment of newly diagnosed and relapsed multiple myeloma patients. Nevertheless, further steps are needed to enable a full exploitation of these strategies, including deeper insights of the mechanisms by which CD38 promotes tumorigenesis and its metabolic additions that could be selectively targeted by therapeutic strategies. Here, we present evidence that CD38 upregulation produces a pervasive intracellular-NAD+ depletion, which impairs mitochondrial fitness and enhances oxidative stress; as result, genetic or pharmacologic approaches that aim to modify CD38 surface-level prime MM cells to NAD+-lowering agents. The molecular mechanism underlying this event is an alteration in mitochondrial dynamics, which decreases mitochondria efficiency and triggers energetic remodeling. Overall, we found that CD38 handling represents an innovative strategy to improve the outcomes of NAD+-lowering agents and provides the rationale for testing these very promising agents in clinical studies involving MM patients.

7.
Sci Rep ; 13(1): 597, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36631513

ABSTRACT

Classical cadherins, including vascular endothelial (VE)-cadherin, are targeted by matrix metalloproteinases (MMPs) and γ-secretase during adherens junction (AJ) disassembly, a mechanism that might have relevance for endothelial cell (EC) integrity and vascular homeostasis. Here, we show that oxidative stress triggered by H2O2 exposure induced efficient VE-cadherin proteolysis by MMPs and γ-secretase in human umbilical endothelial cells (HUVECs). The cytoplasmic domain of VE-cadherin produced by γ-secretase, VE-Cad/CTF2-a fragment that has eluded identification so far-could readily be detected after H2O2 treatment. VE-Cad/CTF2, released into the cytosol, was tightly regulated by proteasomal degradation and was sequentially produced from an ADAM10/17-generated C-terminal fragment, VE-Cad/CTF1. Interestingly, BMP9 and BMP10, two circulating ligands critically involved in vascular maintenance, significantly reduced VE-Cad/CTF2 levels during H2O2 challenge, as well as mitigated H2O2-mediated actin cytoskeleton disassembly during VE-cadherin processing. Notably, BMP9/10 pretreatments efficiently reduced apoptosis induced by H2O2, favoring endothelial cell recovery. Thus, oxidative stress is a trigger of MMP- and γ-secretase-mediated endoproteolysis of VE-cadherin and AJ disassembly from the cytoskeleton in ECs, a mechanism that is negatively controlled by the EC quiescence factors, BMP9 and BMP10.


Subject(s)
Amyloid Precursor Protein Secretases , Proteasome Endopeptidase Complex , Humans , Amyloid Precursor Protein Secretases/metabolism , Proteasome Endopeptidase Complex/metabolism , Endothelial Cells/metabolism , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Cadherins/metabolism , Oxidative Stress , Matrix Metalloproteinases/metabolism , Cells, Cultured , Adherens Junctions/metabolism , Bone Morphogenetic Proteins/metabolism
8.
Int J Mol Sci ; 23(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36232676

ABSTRACT

Intraocular pressure (IOP) is considered an important modifiable risk factor for glaucoma, which is known as the second leading cause of blindness worldwide. However, lowering the IOP is not always sufficient to preserve vision due to other non-IOP-dependent mechanisms being involved. To improve outcomes, adjunctive therapies with IOP-independent targets are required. To date, no studies have shown the effect of citicoline on the trabecular meshwork (TM), even though it is known to possess neuroprotective/enhancement properties and multifactorial mechanisms of action. Given that reactive oxygen species seem to be involved in glaucomatous cascade, in this present study, an advanced millifluidic in vitro model was used to evaluate if citicoline could exert a valid TM protection against oxidative stress. To this end, the cellular behavior, in terms of viability, apoptosis, mitochondrial state, senescence and pro-inflammatory cytokines, on 3D human TM cells, treated either with H2O2 alone or cotreated with citicoline, was analyzed. Our preliminary in vitro results suggest a counteracting effect of citicoline eye drops against oxidative stress on TM cells, though further studies are necessary to explore citicoline's potential as a TM-target therapy.


Subject(s)
Glaucoma , Trabecular Meshwork , Cytidine Diphosphate Choline/pharmacology , Cytokines/pharmacology , Glaucoma/drug therapy , Humans , Hydrogen Peroxide/pharmacology , Intraocular Pressure , Ophthalmic Solutions/pharmacology , Oxidative Stress , Reactive Oxygen Species/pharmacology
9.
Cells ; 11(18)2022 09 15.
Article in English | MEDLINE | ID: mdl-36139463

ABSTRACT

Abscisic acid (ABA) regulates plant responses to stress, partly via NO. In mammals, ABA stimulates NO production by innate immune cells and keratinocytes, glucose uptake and mitochondrial respiration by skeletal myocytes and improves blood glucose homeostasis through its receptors LANCL1 and LANCL2. We hypothesized a role for the ABA-LANCL1/2 system in cardiomyocyte protection from hypoxia via NO. The effect of ABA and of the silencing or overexpression of LANCL1 and LANCL2 were investigated in H9c2 rat cardiomyoblasts under normoxia or hypoxia/reoxygenation. In H9c2, hypoxia induced ABA release, and ABA stimulated NO production. ABA increased the survival of H9c2 to hypoxia, and L-NAME, an inhibitor of NO synthase (NOS), abrogated this effect. ABA also increased glucose uptake and NADPH levels and increased phosphorylation of Akt, AMPK and eNOS. Overexpression or silencing of LANCL1/2 significantly increased or decreased, respectively, transcription, expression and phosphorylation of AMPK, Akt and eNOS; transcription of NAMPT, Sirt1 and the arginine transporter. The mitochondrial proton gradient and cell vitality increased in LANCL1/2-overexpressing vs. -silenced cells after hypoxia/reoxygenation, and L-NAME abrogated this difference. These results implicate the ABA-LANCL1/2 hormone-receptor system in NO-mediated cardiomyocyte protection against hypoxia.


Subject(s)
Abscisic Acid , Myocytes, Cardiac , AMP-Activated Protein Kinases/metabolism , Abscisic Acid/metabolism , Animals , Blood Glucose/metabolism , Cell Hypoxia , Hormones/metabolism , Membrane Proteins/metabolism , Myocytes, Cardiac/metabolism , NADP/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Rats , Receptors, G-Protein-Coupled , Sirtuin 1/metabolism
10.
Hum Mol Genet ; 31(24): 4255-4274, 2022 12 16.
Article in English | MEDLINE | ID: mdl-35908287

ABSTRACT

Mutations in the Myelin Protein Zero gene (MPZ), encoding P0, the major structural glycoprotein of peripheral nerve myelin, are the cause of Charcot-Marie-Tooth (CMT) type 1B neuropathy, and most P0 mutations appear to act through gain-of-function mechanisms. Here, we investigated how misglycosylation, a pathomechanism encompassing several genetic disorders, may affect P0 function. Using in vitro assays, we showed that gain of glycosylation is more damaging for P0 trafficking and functionality as compared with a loss of glycosylation. Hence, we generated, via CRISPR/Cas9, a mouse model carrying the MPZD61N mutation, predicted to generate a new N-glycosylation site in P0. In humans, MPZD61N causes a severe early-onset form of CMT1B, suggesting that hyperglycosylation may interfere with myelin formation, leading to pathology. We show here that MPZD61N/+ mice develop a tremor as early as P15 which worsens with age and correlates with a significant motor impairment, reduced muscular strength and substantial alterations in neurophysiology. The pathological analysis confirmed a dysmyelinating phenotype characterized by diffuse hypomyelination and focal hypermyelination. We find that the mutant P0D61N does not cause significant endoplasmic reticulum stress, a common pathomechanism in CMT1B, but is properly trafficked to myelin where it causes myelin uncompaction. Finally, we show that myelinating dorsal root ganglia cultures from MPZD61N mice replicate some of the abnormalities seen in vivo, suggesting that they may represent a valuable tool to investigate therapeutic approaches. Collectively, our data indicate that the MPZD61N/+ mouse represents an authentic model of severe CMT1B affirming gain-of-glycosylation in P0 as a novel pathomechanism of disease.


Subject(s)
Charcot-Marie-Tooth Disease , Myelin P0 Protein , Humans , Mice , Animals , Myelin P0 Protein/genetics , Charcot-Marie-Tooth Disease/pathology , Myelin Sheath/metabolism , Phenotype , Mutation , Disease Models, Animal
11.
Antioxidants (Basel) ; 11(6)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35740068

ABSTRACT

Induction of heme oxygenase 1 (HO-1) favors immune-escape in BRAFV600 melanoma cells treated with Vemurafenib/PLX4032 under standard cell culture conditions. However, the oxygen tension under standard culture conditions (~18 kPa O2) is significantly higher than the physiological oxygen levels encountered in vivo. In addition, cancer cells in vivo are often modified by hypoxia. In this study, MeOV-1 primary melanoma cells bearing the BRAFV600E mutation, were adapted to either 5 kPa O2 (physiological normoxia) or 1 kPa O2 (hypoxia) and then exposed to 10 µM PLX4032. PLX4032 abolished ERK phosphorylation, reduced Bach1 expression and increased HO-1 levels independent of pericellular O2 tension. Moreover, cell viability was significantly reduced further in cells exposed to PLX4032 plus Tin mesoporphyrin IX, a HO-1 inhibitor. Notably, our findings provide the first evidence that HO-1 inhibition in combination with PLX4032 under physiological oxygen tension and hypoxia restores and increases the expression of the NK ligands ULBP3 and B7H6 compared to cells exposed to PLX4032 alone. Interestingly, although silencing NRF2 prevented PLX4032 induction of HO-1, other NRF2 targeted genes were unaffected, highlighting a pivotal role of HO-1 in melanoma resistance and immune escape. The present findings may enhance translation and highlight the potential of the HO-1 inhibitors in the therapy of BRAFV600 melanomas.

12.
Nucleic Acids Res ; 50(13): 7608-7622, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35748870

ABSTRACT

EPR is a long non-coding RNA (lncRNA) that controls cell proliferation in mammary gland cells by regulating gene transcription. Here, we report on Mettl7a1 as a direct target of EPR. We show that EPR induces Mettl7a1 transcription by rewiring three-dimensional chromatin interactions at the Mettl7a1 locus. Our data indicate that METTL7A1 contributes to EPR-dependent inhibition of TGF-ß signaling. METTL7A1 is absent in tumorigenic murine mammary gland cells and its human ortholog (METTL7A) is downregulated in breast cancers. Importantly, re-expression of METTL7A1 in 4T1 tumorigenic cells attenuates their transformation potential, with the putative methyltransferase activity of METTL7A1 being dispensable for its biological functions. We found that METTL7A1 localizes in the cytoplasm whereby it interacts with factors implicated in the early steps of mRNA translation, associates with ribosomes, and affects the levels of target proteins without altering mRNA abundance. Overall, our data indicates that METTL7A1-a transcriptional target of EPR-modulates translation of select transcripts.


Subject(s)
Breast Neoplasms , Methyltransferases/metabolism , RNA, Long Noncoding , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Proliferation , Chromatin/genetics , Female , Humans , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Ribosomes/metabolism
13.
Int J Mol Sci ; 23(4)2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35216441

ABSTRACT

BACKGROUND: Roles of astrocytes in the modulatory effects of oxytocin (OT) in central nervous system are increasingly considered. Nevertheless, OT effects on gliotransmitter release have been neglected. METHODS: In purified astrocyte processes from adult rat striatum, we assessed OT receptor (OTR) and adenosine A2A receptor expression by confocal analysis. The effects of receptors activation on glutamate release from the processes were evaluated; A2A-OTR heteromerization was assessed by co-immunoprecipitation and PLA. Structure of the possible heterodimer of A2A and OT receptors was estimated by a bioinformatic approach. RESULTS: Both A2A and OT receptors were expressed on the same astrocyte processes. Evidence for A2A-OTR receptor-receptor interaction was obtained by measuring the release of glutamate: OT inhibited the evoked glutamate release, while activation of A2A receptors, per se ineffective, abolished the OT effect. Biochemical and biophysical evidence for A2A-OTR heterodimers on striatal astrocytes was also obtained. The residues in the transmembrane domains 4 and 5 of both receptors are predicted to be mainly involved in the heteromerization. CONCLUSIONS: When considering effects of OT in striatum, modulation of glutamate release from the astrocyte processes and of glutamatergic synapse functioning, and the interaction with A2A receptors on the astrocyte processes should be taken into consideration.


Subject(s)
Astrocytes/metabolism , Glutamic Acid/metabolism , Receptor, Adenosine A2A/metabolism , Receptors, Oxytocin/metabolism , Animals , Corpus Striatum/metabolism , Male , Neostriatum/metabolism , Oxytocin/metabolism , Rats , Rats, Sprague-Dawley
14.
Haematologica ; 107(6): 1410-1426, 2022 06 01.
Article in English | MEDLINE | ID: mdl-34670358

ABSTRACT

Identification of novel vulnerabilities in the context of therapeutic resistance is emerging as a key challenge for cancer treatment. Recent studies have detected pervasive aberrant splicing in cancer cells, supporting its targeting for novel therapeutic strategies. Here, we evaluated the expression of several spliceosome machinery components in multiple myeloma (MM) cells and the impact of splicing modulation on tumor cell growth and viability. A comprehensive gene expression analysis confirmed the reported deregulation of spliceosome machinery components in MM cells, compared to normal plasma cells from healthy donors, with its pharmacological and genetic modulation resulting in impaired growth and survival of MM cell lines and patient-derived malignant plasma cells. Consistent with this, transcriptomic analysis revealed deregulation of BCL2 family members, including decrease of anti-apoptotic long form of myeloid cell leukemia-1 (MCL1) expression, as crucial for "priming" MM cells for Venetoclax activity in vitro and in vivo, irrespective of t(11;14) status. Overall, our data provide a rationale for supporting the clinical use of splicing modulators as a strategy to reprogram apoptotic dependencies and make all MM patients more vulnerable to BCL2 inhibitors.


Subject(s)
Antineoplastic Agents , Multiple Myeloma , Antineoplastic Agents/therapeutic use , Apoptosis , Bridged Bicyclo Compounds, Heterocyclic , Cell Line, Tumor , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Myeloid Cell Leukemia Sequence 1 Protein , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides
15.
Int J Mol Sci ; 22(22)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34830007

ABSTRACT

Primary Open-Angle Glaucoma (POAG) is a neurodegenerative disease, and its clinical outcomes lead to visual field constriction and blindness. POAG's etiology is very complex and its pathogenesis is mainly explained through both mechanical and vascular theories. The trabecular meshwork (TM), the most sensitive tissue of the eye anterior segment to oxidative stress (OS), is the main tissue involved in early-stage POAG, characterized by an increase in pressure. Preclinical assessments of neuroprotective drugs on animal models have not always shown correspondence with human clinical studies. In addition, intra-ocular pressure management after a glaucoma diagnosis does not always prevent blindness. Recently, we have been developing an innovative in vitro 3Dadvanced human trabecular cell model on a millifluidicplatform as a tool to improve glaucoma studies. Herein, we analyze the effects of prolonged increased pressure alone and, in association with OS, on such in vitro platform. Moreover, we verify whethersuch damaged TM triggers apoptosis on neuron-like cells. The preliminary results show that TM cells are less sensitive to pressure elevation than OS, and OS-damaging effects were worsened by the pressure increase. The stressed TM releases harmful signals, which increase apoptosis stimuli on neuron-like cells, suggesting its pivotal role in the glaucoma cascade.


Subject(s)
Glaucoma, Open-Angle/drug therapy , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Trabecular Meshwork/drug effects , Apoptosis/drug effects , Cell Line , Eye/metabolism , Eye/pathology , Glaucoma, Open-Angle/genetics , Glaucoma, Open-Angle/metabolism , Glaucoma, Open-Angle/pathology , Humans , Intraocular Pressure/drug effects , Trabecular Meshwork/metabolism , Trabecular Meshwork/pathology
16.
J Cell Sci ; 134(3)2021 02 04.
Article in English | MEDLINE | ID: mdl-33443102

ABSTRACT

KRIT1 is a scaffolding protein that regulates multiple molecular mechanisms, including cell-cell and cell-matrix adhesion, and redox homeostasis and signaling. However, rather little is known about how KRIT1 is itself regulated. KRIT1 is found in both the cytoplasm and the nucleus, yet the upstream signaling proteins and mechanisms that regulate KRIT1 nucleocytoplasmic shuttling are not well understood. Here, we identify a key role for protein kinase C (PKC) in this process. In particular, we found that PKC activation promotes the redox-dependent cytoplasmic localization of KRIT1, whereas inhibition of PKC or treatment with the antioxidant N-acetylcysteine leads to KRIT1 nuclear accumulation. Moreover, we demonstrated that the N-terminal region of KRIT1 is crucial for the ability of PKC to regulate KRIT1 nucleocytoplasmic shuttling, and may be a target for PKC-dependent regulatory phosphorylation events. Finally, we found that silencing of PKCα, but not PKCδ, inhibits phorbol 12-myristate 13-acetate (PMA)-induced cytoplasmic enrichment of KRIT1, suggesting a major role for PKCα in regulating KRIT1 nucleocytoplasmic shuttling. Overall, our findings identify PKCα as a novel regulator of KRIT1 subcellular compartmentalization, thus shedding new light on the physiopathological functions of this protein.


Subject(s)
Active Transport, Cell Nucleus , KRIT1 Protein/metabolism , Protein Kinase C-alpha , HeLa Cells , Humans , Phosphorylation , Protein Kinase C-alpha/genetics , Tetradecanoylphorbol Acetate
17.
Cancer Metab ; 9(1): 6, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33482921

ABSTRACT

BACKGROUND: Sirtuin 6 (SIRT6) is a NAD+-dependent deacetylase with key roles in cell metabolism. High SIRT6 expression is associated with adverse prognosis in breast cancer (BC) patients. However, the mechanisms through which SIRT6 exerts its pro-oncogenic effects in BC remain unclear. Here, we sought to define the role of SIRT6 in BC cell metabolism and in mouse polyoma middle T antigen (PyMT)-driven mammary tumors. METHODS: We evaluated the effect of a heterozygous deletion of Sirt6 on tumor latency and survival of mouse mammary tumor virus (MMTV)-PyMT mice. The effect of SIRT6 silencing on human BC cell growth was assessed in MDA-MB-231 xenografts. We also analyzed the effect of Sirt6 heterozygous deletion, of SIRT6 silencing, and of the overexpression of either wild-type (WT) or catalytically inactive (H133Y) SIRT6 on BC cell pyruvate dehydrogenase (PDH) expression and activity and oxidative phosphorylation (OXPHOS), including respiratory complex activity, ATP/AMP ratio, AMPK activation, and intracellular calcium concentration. RESULTS: The heterozygous Sirt6 deletion extended tumor latency and mouse survival in the MMTV-PyMT mouse BC model, while SIRT6 silencing slowed the growth of MDA-MB-231 BC cell xenografts. WT, but not catalytically inactive, SIRT6 enhanced PDH expression and activity, OXPHOS, and ATP/AMP ratio in MDA-MB-231 and MCF7 BC cells. Opposite effects were obtained by SIRT6 silencing, which also blunted the expression of genes encoding for respiratory chain proteins, such as UQCRFS1, COX5B, NDUFB8, and UQCRC2, and increased AMPK activation in BC cells. In addition, SIRT6 overexpression increased, while SIRT6 silencing reduced, intracellular calcium concentration in MDA-MB-231 cells. Consistent with these findings, the heterozygous Sirt6 deletion reduced the expression of OXPHOS-related genes, the activity of respiratory complexes, and the ATP/AMP ratio in tumors isolated from MMTV-PyMT mice. CONCLUSIONS: Via its enzymatic activity, SIRT6 enhances PDH expression and activity, OXPHOS, ATP/AMP ratio, and intracellular calcium concentration, while reducing AMPK activation, in BC cells. Thus, overall, SIRT6 inhibition appears as a viable strategy for preventing or treating BC.

19.
Haematologica ; 105(10): 2420-2431, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33054082

ABSTRACT

Tyrosine kinases have been implicated in promoting tumorigenesis of several human cancers. Exploiting these vulnerabilities has been shown to be an effective anti-tumor strategy as demonstrated for example by the Bruton's tyrosine kinase (BTK) inhibitor, ibrutinib, for treatment of various blood cancers. Here, we characterize a new multiple kinase inhibitor, ARQ531, and evaluate its mechanism of action in preclinical models of acute myeloid leukemia. Treatment with ARQ531, by producing global signaling pathway deregulation, resulted in impaired cell cycle progression and survival in a large panel of leukemia cell lines and patient-derived tumor cells, regardless of the specific genetic background and/or the presence of bone marrow stromal cells. RNA-seq analysis revealed that ARQ531 constrained tumor cell proliferation and survival through Bruton's tyrosine kinase and transcriptional program dysregulation, with proteasome-mediated MYB degradation and depletion of short-lived proteins that are crucial for tumor growth and survival, including ERK, MYC and MCL1. Finally, ARQ531 treatment was effective in a patient-derived leukemia mouse model with significant impairment of tumor progression and survival, at tolerated doses. These data justify the clinical development of ARQ531 as a promising targeted agent for the treatment of patients with acute myeloid leukemia.


Subject(s)
Leukemia, Myeloid, Acute , Protein Kinase Inhibitors , Agammaglobulinaemia Tyrosine Kinase , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases , Pyrimidines
20.
Blood Adv ; 4(18): 4312-4326, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32915979

ABSTRACT

Metabolic reprogramming is emerging as a cancer vulnerability that could be therapeutically exploitable using different approaches, including amino acid depletion for those tumors that rely on exogenous amino acids for their maintenance. ʟ-Asparaginase (ASNase) has contributed to a significant improvement in acute lymphoblastic leukemia outcomes; however, toxicity and resistance limit its clinical use in other tumors. Here, we report that, in multiple myeloma (MM) cells, the DNA methylation status is significantly associated with reduced expression of ASNase-related gene signatures, thus suggesting ASNase sensitivity for this tumor. Therefore, we tested the effects of ASNase purified from Erwinia chrysanthemi (Erw-ASNase), combined with the next-generation proteasome inhibitor (PI) carfilzomib. We observed an impressive synergistic effect on MM cells, whereas normal peripheral blood mononuclear cells were not affected. Importantly, this effect was associated with increased reactive oxygen species (ROS) generation, compounded mitochondrial damage, and Nrf2 upregulation, regardless of the c-Myc oncogenic-specific program. Furthermore, the cotreatment resulted in genomic instability and DNA repair mechanism impairment via increased mitochondrial oxidative stress, which further enhanced its antitumor activity. Interestingly, carfilzomib-resistant cells were found to be highly dependent on amino acid starvation, as reflected by their higher sensitivity to Erw-ASNase treatment compared with isogenic cells. Overall, by affecting several cellular programs, Erw-ASNase makes MM cells more vulnerable to carfilzomib, providing proof of concept for clinical use of this combination as a novel strategy to enhance PI sensitivity in MM patients.


Subject(s)
Amino Acids , Asparaginase , Asparaginase/pharmacology , Cell Death , Humans , Leukocytes, Mononuclear , Mitochondria , Oligopeptides , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...