Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 165
Filter
1.
Ageing Res Rev ; 94: 102180, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38163518

ABSTRACT

A pangenome is composed of all the genetic variability of a group of individuals, and its application to the study of neurodegenerative diseases may provide valuable insights into the underlying aspects of genetic heterogenetiy for these complex ailments, including gene expression, epigenetics, and translation mechanisms. Furthermore, a reference pangenome allows for the identification of previously undetected structural commonalities and differences among individuals, which may help in the diagnosis of a disease, support the prediction of what will happen over time (prognosis) and aid in developing novel treatments in the perspective of personalized medicine. Therefore, in the present review, the application of the pangenome concept to the study of neurodegenerative diseases will be discussed and analyzed for its potential to enable an improvement in diagnosis and prognosis for these illnesses, leading to the development of tailored treatments for individual patients from the knowledge of the genomic composition of a whole population.


Subject(s)
Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/therapy , Genomics
2.
J Aging Health ; : 8982643231220436, 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38069820

ABSTRACT

OBJECTIVE: The aim is to explore the role of anthropometric traits and sociodemographic characteristics on human survival. METHODS: Anthropometrics and sociodemographic data of 1944 conscripts born in the first decade of the 20th century in rural municipalities of Calabria (Southern Italy) who underwent medical examinations for military service were collected. Medical examinations were linked to individual survival data. RESULTS: Height and type of occupation influenced life expectancy. For taller men, the risk of mortality increases by about 20% when compared with men with middle height, while farmers exhibited a significant survival advantage compared to those with other working experiences. DISCUSSION: Height and type of occupation were associated with human mortality. These results are likely to be related to the effect of healthy dietary patterns and physical activity on life expectancy. Further studies are needed to understand to what extent these results obtained in a rural context can be generalized to other contexts.

3.
Immun Ageing ; 20(1): 76, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38111002

ABSTRACT

BACKGROUND: Coronavirus disease COVID-19 is a heterogeneous condition caused by SARS-CoV-2 infection. Generally, it is characterized by interstitial pneumonia that can lead to impaired gas-exchange, acute respiratory failure, and death, although a complex disorder of multi-organ dysfunction has also been described. The pathogenesis is complex, and a variable combination of factors has been described in critically ill patients. COVID-19 is a particular risk for older persons, particularly those with frailty and comorbidities. Blood bacterial DNA has been reported in both physiological and pathological conditions and has been associated with some haematological and laboratory parameters but, to date, no study has characterized it in hospitalized old COVID-19 patients The present study aimed to establish an association between blood bacterial DNA (BB-DNA) and clinical severity in old COVID-19 patients. RESULTS: BB-DNA levels were determined, by quantitative real-time PCRs targeting the 16S rRNA gene, in 149 hospitalized older patients (age range 65-99 years) with COVID-19. Clinical data, including symptoms and signs of infection, frailty status, and comorbidities, were assessed. BB-DNA was increased in deceased patients compared to discharged ones, and Cox regression analysis confirmed an association between BB-DNA and in-hospital mortality. Furthermore, BB-DNA was positively associated with the neutrophil count and negatively associated with plasma IFN-alpha. Additionally, BB-DNA was associated with diabetes. CONCLUSIONS: The association of BB-DNA with mortality, immune-inflammatory parameters and diabetes in hospitalized COVID-19 patients suggests its potential role as a biomarker of unfavourable outcomes of the disease, thus it could be proposed as a novel prognostic marker in the assessment of acute COVID-19 disease.

4.
Biology (Basel) ; 12(10)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37886996

ABSTRACT

Telomeres are structures at the ends of eukaryotic chromosomes that help maintain genomic stability. During aging, telomere length gradually shortens, producing short telomeres, which are markers of premature cellular senescence. This may contribute to age-related diseases, including Alzheimer's disease (AD), and based on this, several studies have hypothesized that telomere shortening may characterize AD. Current research, however, has been inconclusive regarding the direction of the association between leukocyte telomere length (LTL) and disease risk. We assessed the association between LTL and AD in a retrospective case-control study of a sample of 255 unrelated patients with late-onset AD (LOAD), including 120 sporadic cases and 135 with positive family history for LOAD, and a group of 279 cognitively healthy unrelated controls, who were all from Calabria, a southern Italian region. Following regression analysis, telomeres were found significantly shorter in LOAD cases than in controls (48% and 41% decrease for sporadic and familial cases, respectively; p < 0.001 for both). Interestingly, LTL was associated with disease risk independently of the presence of conventional risk factors (e.g., age, sex, MMSE scores, and the presence of the APOE-ε4 allele). Altogether, our findings lend support to the notion that LTL shortening may be an indicator of the pathogenesis of LOAD.

5.
ACS Omega ; 8(34): 31333-31343, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37663494

ABSTRACT

The emergence of antibiotic-resistant bacteria has become a major public health concern, leading to growing interest in alternative antimicrobial agents. The antibacterial activity of metal nanoparticles (NPs) has been extensively studied, showing that they can effectively inhibit the growth of various bacteria, including both Gram-positive and -negative strains. The presence of a protein corona, formed by the adsorption of proteins onto the NP surface in biological fluids, can significantly affect their toxicity. Understanding the effect of the protein corona on the antimicrobial activity of metal NPs is crucial for their effective use as antimicrobial agents. In this study, the antimicrobial activity of noble metal NPs, such as platinum (Pt), silver (Ag), and gold (Au) with and without the human serum albumin (HSA) protein corona against Escherichia coli strains, was investigated. In addition, the plasmonic photothermal effect related to AuNPs, which resulted to be the most biocompatible compared to the other considered metals, was evaluated. The obtained results suggest that the HSA protein corona modulated the antimicrobial activity exerted by the metal NPs against E. coli bacteria. These findings may pave the way for the investigation and development of innovative nanoapproaches to face antibiotic resistance emergence.

6.
Cells ; 12(18)2023 09 07.
Article in English | MEDLINE | ID: mdl-37759449

ABSTRACT

G protein-coupled estrogen receptor 1 (GPER1) activation is emerging as a promising therapeutic strategy against several cancer types. While GPER targeting has been widely studied in the context of solid tumors, its effect on hematological malignancies remains to be fully understood. Here, we show that GPER1 mRNA is down-regulated in plasma cells from overt multiple myeloma (MM) and plasma cell leukemia patients as compared to normal donors or pre-malignant conditions (monoclonal gammopathy of undetermined significance and smoldering MM); moreover, lower GPER1 expression associates with worse overall survival of MM patients. Using the clinically applicable GPER1-selective agonist G-1, we demonstrate that the pharmacological activation of GPER1 triggered in vitro anti-MM activity through apoptosis induction, also overcoming the protective effects exerted by bone marrow stromal cells. Noteworthy, G-1 treatment reduced in vivo MM growth in two distinct xenograft models, even bearing bortezomib-resistant MM cells. Mechanistically, G-1 upregulated the miR-29b oncosuppressive network, blunting an established miR-29b-Sp1 feedback loop operative in MM cells. Overall, this study highlights the druggability of GPER1 in MM, providing the first preclinical framework for further development of GPER1 agonists to treat this malignancy.


Subject(s)
Hematologic Neoplasms , MicroRNAs , Multiple Myeloma , Smoldering Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Plasma Cells
7.
Microorganisms ; 11(9)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37764204

ABSTRACT

The gut microbiota has gained increasing attention in recent years due to its significant impact on colorectal cancer (CRC) development and progression. The recent detection of bacterial DNA load in plasma holds promise as a potential non-invasive approach for early cancer detection. The aim of this study was to examine the quantity of bacterial DNA present in the plasma of 50 patients who have CRC in comparison to 40 neoplastic disease-free patients, as well as to determine if there is a correlation between the amount of plasma bacterial DNA and various clinical parameters. Plasma bacterial DNA levels were found to be elevated in the CRC group compared to the control group. As it emerged from the logistic analysis (adjusted for age and gender), these levels were strongly associated with the risk of CRC (OR = 1.02, p < 0.001, 95% C.I.: 1.01-1.03). Moreover, an association was identified between a reduction in tumor mass and the highest tertile of plasma bacterial DNA. Our findings indicate that individuals with CRC displayed a higher plasma bacterial DNA load compared to healthy controls. This observation lends support to the theory of heightened bacterial migration from the gastrointestinal tract to the bloodstream in CRC. Furthermore, our results establish a link between this phenomenon and the size of the tumor mass.

8.
Ageing Res Rev ; 91: 102068, 2023 11.
Article in English | MEDLINE | ID: mdl-37704050

ABSTRACT

Alzheimer's disease (AD) represents the most frequent type of dementia in elderly people. Two major forms of the disease exist: sporadic - the causes of which have not yet been fully understood - and familial - inherited within families from generation to generation, with a clear autosomal dominant transmission of mutations in Presenilin 1 (PSEN1), 2 (PSEN2) or Amyloid Precursors Protein (APP) genes. The main hallmark of AD consists of extracellular deposits of amyloid-beta (Aß) peptide and intracellular deposits of the hyperphosphorylated form of the tau protein. An ever-growing body of research supports the viral infectious hypothesis of sporadic forms of AD. In particular, it has been shown that several herpes viruses (i.e., HHV-1, HHV-2, HHV-3 or varicella zoster virus, HHV-4 or Epstein Barr virus, HHV-5 or cytomegalovirus, HHV-6A and B, HHV-7), flaviviruses (i.e., Zika virus, Dengue fever virus, Japanese encephalitis virus) as well as Human Immunodeficiency Virus (HIV), hepatitis viruses (HAV, HBV, HCV, HDV, HEV), SARS-CoV2, Ljungan virus (LV), Influenza A virus and Borna disease virus, could increase the risk of AD. Here, we summarized and discussed these results. Based on these findings, significant issues for future studies are also put forward.


Subject(s)
Alzheimer Disease , Epstein-Barr Virus Infections , Virus Diseases , Zika Virus Infection , Zika Virus , Animals , Humans , Aged , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , RNA, Viral , Herpesvirus 4, Human/metabolism , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Peptides/metabolism , Virus Diseases/complications , Zika Virus/genetics , Zika Virus/metabolism
10.
Aging Cell ; 22(9): e13938, 2023 09.
Article in English | MEDLINE | ID: mdl-37621137

ABSTRACT

Advanced age is the largest risk factor for late-onset Alzheimer's disease (LOAD), a disease in which susceptibility correlates to almost all hallmarks of aging. Shared genetic signatures between LOAD and longevity were frequently hypothesized, likely characterized by distinctive epistatic and pleiotropic interactions. Here, we applied a multidimensional reduction approach to detect gene-gene interactions affecting LOAD in a large dataset of genomic variants harbored by genes in the insulin/IGF1 signaling, DNA repair, and oxidative stress pathways, previously investigated in human longevity. The dataset was generated from a collection of publicly available Genome Wide Association Studies, comprising a total of 2,469 gene variants genotyped in 20,766 subjects of Northwestern European ancestry (11,038 LOAD cases and 9,728 controls). The stratified analysis according to APOE*4 status and sex corroborated evidence that pathways leading to longevity also contribute to LOAD. Among the significantly interacting genes, PTPN1, TXNRD1, and IGF1R were already found enriched in gene-gene interactions affecting survival to old age. Furthermore, interacting variants associated with LOAD in a sex- and APOE-specific way. Indeed, while in APOE*4 female carriers we found several inter-pathway interactions, no significant epistasis was found in APOE*4 negative females; conversely, in males, significant intra- and inter-pathways epistasis emerged according to APOE*4 status. These findings suggest that interactions of risk factors may drive different trajectories of cognitive aging. Beyond helping to disentangle the genetic architecture of LOAD, such knowledge may improve precision in predicting the risk of dementia and enable effective sex- and APOE-stratified preventive and therapeutic interventions for LOAD.


Subject(s)
Alzheimer Disease , Longevity , Male , Female , Humans , Longevity/genetics , Alzheimer Disease/genetics , Epistasis, Genetic , Genome-Wide Association Study , Apolipoprotein E4/genetics
11.
Diabetol Metab Syndr ; 15(1): 156, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37461091

ABSTRACT

BACKGROUND: Syndecan-4 (SDC4) is a member of the heparan sulfate proteoglycan family of cell-surface receptors. We and others previously reported that variation in the SDC4 gene was associated with several components of the metabolic syndrome, including intra-abdominal fat, fasting glucose and triglyceride levels, and hypertension, in human cohorts. Additionally, we demonstrated that high fat diet (HFD)-induced obese female mice with a Sdc4 genetic deletion had higher visceral adiposity and a worse metabolic profile than control mice. Here, we aimed to first investigate whether the mouse Sdc4 null mutation impacts metabolic phenotypes in a sex- and diet-dependent manner. We then tested whether SDC4 polymorphisms are related to the metabolic syndrome (MetS) in humans. METHODS: For the mouse experiment, Sdc4-deficient (Sdc4-/-) and wild-type (WT) mice were treated with 14-weeks of low-fat diet (LFD). Body composition, energy balance, and selected metabolic phenotypes were assessed. For the human genetic study, we used logistic regression models to test 11 SDC4 SNPs for association with the MetS and its components in a cohort of 274 (113 with MetS) elderly subjects from southern Italy. RESULTS: Following the dietary intervention in mice, we observed that the effects of the Sdc4 null mutation on several phenotypes were different from those previously reported in the mice kept on an HFD. Nonetheless, LFD-fed female Sdc4-/- mice, but not males, displayed higher levels of triglycerides and lower insulin sensitivity at fasting than WT mice, as seen earlier in the HFD conditions. In the parallel human study, we found that carriers of SDC4 rs2228384 allele C and rs2072785 allele T had reduced risk of MetS. The opposite was true for carriers of the SDC4 rs1981429 allele G. Additionally, the SNPs were found related to fasting triglyceride levels and triglyceride glucose (TyG) index, a reliable indicator of insulin resistance, with sex-stratified analysis detecting the association of rs1981429 with these phenotypes only in females. CONCLUSIONS: Altogether, our results suggest that SDC4 is an evolutionary conserved genetic determinant of MetS and that its genetic variation is associated with fasting triglyceride levels in a female-specific manner.

12.
Microorganisms ; 11(5)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37317124

ABSTRACT

The biological role played by essential oils extracted from aromatic plants is progressively being recognized. This study evaluated the potential antibacterial activity of ten essential oils against Chromobacterium violaceum, Pseudomonas aeruginosa, and Enterococcus faecalis by measuring their minimum inhibitory concentration. We found that essential oils exert different antimicrobial effects, with Origanum vulgare and Foeniculum vulgare demonstrating the most significant inhibitory effect on bacterial growth for C. violaceum and E. faecalis. The growth of P. aeruginosa was not affected by any essential oil concentration we used. Sub-inhibitory concentrations of essential oils reduced in C. violaceum and E. faecalis biofilm formation, violacein amount, and gelatinase activity, all of which are biomarkers of the Quorum Sensing process. These concentrations significantly affect the global methylation profiles of cytosines and adenines, thus leading to the hypothesis that the oils also exert their effects through epigenetic changes. Considering the results obtained, it is possible that essential oils can find a broad spectrum of applications in counteracting microbial contamination and preserving sterility of surfaces and foods, as well as inhibiting microbial growth of pathogens, alone or in combination with traditional antibiotics.

13.
Microbiol Spectr ; 11(3): e0458322, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37184386

ABSTRACT

Adaptive antibiotic resistance is a transient metabolic adaptation of bacteria limiting their sensitivity to low, progressively increased, concentrations of antibiotics. Unlike innate and acquired resistance, adaptive resistance is dependent on the presence of antibiotics, and it disappears when the triggering factor is removed. Low concentrations of antibiotics are largely diffused in natural environments, in the food industry or in certain body compartments of humans when used therapeutically, or in animals when used for growth promotion. However, molecular mechanisms underlying this phenomenon are still poorly characterized. Here, we present experiments suggesting that epigenetic modifications, triggered by low concentrations of ampicillin, gentamicin, and ciprofloxacin, may modulate the sensitivity of bacteria to antibiotics. The epigenetic modifications we observed were paralleled by modifications of the expression pattern of many genes, including some of those that have been found mutated in strains with permanent antibiotic resistance. As the use of low concentrations of antibiotics is spreading in different contexts, our findings may suggest new targets and strategies to avoid adaptive antibiotic resistance. This might be very important as, in the long run, this transient adaptation may increase the chance, allowing the survival and the flourishing of bacteria populations, of the onset of mutations leading to stable resistance. IMPORTANCE In this study, we characterized the modifications of epigenetic marks and of the whole transcriptome in the adaptive response of Escherichia coli cells to low concentrations of ampicillin, gentamicin, and ciprofloxacin. As the transient adaptation does increase the chance of permanent resistance, possibly allowing the survival and flourishing of bacteria populations where casual mutations providing resistance may give an immediate advantage, the importance of this study is not only in the identification of possible molecular mechanisms underlying adaptive resistance to antibiotics, but also in suggesting new strategies to avoid adaptation.


Subject(s)
Escherichia coli , Transcriptome , Animals , Humans , Anti-Bacterial Agents/pharmacology , Ampicillin/pharmacology , Ciprofloxacin/pharmacology , Gentamicins/pharmacology , Drug Resistance, Microbial , Epigenesis, Genetic , Microbial Sensitivity Tests
14.
Immun Ageing ; 20(1): 16, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37038200

ABSTRACT

BACKGROUND: Immunosenescence is a complex process characterized by an age-related remodelling of immune system. The prominent effects of the immunosenescence process is the thymic involution and, consequently, the decreased numbers and functions of T cells. Since thymic involution results in a collapse of the T-cell receptor (TCR) repertoire, a reliable biomarker of its activity is represented by the quantification of signal joint T-cell receptor rearrangement excision circles (sjTRECs) levels. Although it is reasonable to think that thymic function could play a crucial role on elderly survival, only a few studies investigated the relationship between an accurate measurement of human thymic function and survival at old ages. METHODS AND FINDINGS: By quantifying the amount sjTRECs by real-time polymerase chain reaction (PCR), the decrease in thymic output in 241 nursing home residents from Calabria (Southern Italy) was evaluated to investigate the relationship between thymic function and survival at old ages. We found that low sjTREC levels were associated with a significant increased risk of mortality at older ages. Nursing home residents with lower sjTREC exhibit a near 2-fold increase in mortality risk compared to those with sjTREC levels in a normal range. CONCLUSION: Thymic function failure is an independent predictor of mortality among elderly nursing home residents. sjTREC represents a biomarker of effective ageing as its blood levels could anticipate individuals at high risk of negative health outcomes. The identification of these subjects is crucial to manage older people's immune function and resilience, such as, for instance, to plan more efficient vaccinal campaigns in older populations.

15.
Nutrients ; 15(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37111060

ABSTRACT

Different nutritional regimens have been reported to exert beneficial effects on obesity through the regulation of the composition and function of gut microbiota. In this context, we conducted in obese subjects two dietary interventions consisting of a low-calorie and two-phase (ketogenic plus low-calorie) diet for 8 weeks. Anthropometric and clinical parameters were evaluated at baseline and following the two diets, and gut microbiota composition was assessed by 16S rRNA gene sequencing. A significant reduction was observed for abdominal circumference and insulin levels in the subjects following the two-phase diet. Significant differences in gut microbial composition were observed after treatment compared to the baseline. Both diets induced taxonomic shifts including a decrease in Proteobacteria, which are recognized as dysbiosis markers and enrichment of Verrucomicrobiaceae, which has recently emerged as an effective probiotic. An increase in Bacteroidetes, constituting the so-called good bacteria, was observable only in the two-phase diet. These findings provide evidence that a targeted nutritional regimen and an appropriate use of probiotics can modulate gut microbiota to reach a favorable composition and achieve the balance often compromised by different pathologies and conditions, such as obesity.


Subject(s)
Gastrointestinal Microbiome , Humans , RNA, Ribosomal, 16S/genetics , Obesity/microbiology , Diet , Energy Intake
16.
Geroscience ; 45(3): 1817-1835, 2023 06.
Article in English | MEDLINE | ID: mdl-36964402

ABSTRACT

Claims surrounding exceptional longevity are sometimes disputed or dismissed for lack of credible evidence. Here, we present three DNA methylation-based age estimators (epigenetic clocks) for verifying age claims of centenarians. The three centenarian clocks were developed based on n = 7039 blood and saliva samples from individuals older than 40, including n = 184 samples from centenarians, 122 samples from semi-supercentenarians (aged 105 +), and 25 samples from supercentenarians (aged 110 +). The oldest individual was 115 years old. Our most accurate centenarian clock resulted from applying a neural network model to a training set composed of individuals older than 40. An epigenome-wide association study of age in different age groups revealed that age effects in young individuals (age < 40) are correlated (r = 0.55) with age effects in old individuals (age > 90). We present a chromatin state analysis of age effects in centenarians. The centenarian clocks are expected to be useful for validating claims surrounding exceptional old age.


Subject(s)
Centenarians , Longevity , Aged, 80 and over , Humans , Longevity/genetics , DNA Methylation , Epigenesis, Genetic/genetics
17.
Int J Mol Sci ; 24(3)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36768576

ABSTRACT

The prediction of chronological age from methylation-based biomarkers represents one of the most promising applications in the field of forensic sciences. Age-prediction models developed so far are not easily applicable for forensic caseworkers. Among the several attempts to pursue this objective, the formulation of single-locus models might represent a good strategy. The present work aimed to develop an accurate single-locus model for age prediction exploiting ELOVL2, a gene for which epigenetic alterations are most highly correlated with age. We carried out a systematic review of different published pyrosequencing datasets in which methylation of the ELOVL2 promoter was analysed to formulate age prediction models. Nine of these, with available datasets involving 2298 participants, were selected. We found that irrespective of which model was adopted, a very strong relationship between ELOVL2 methylation levels and age exists. In particular, the model giving the best age-prediction accuracy was the gradient boosting regressor with a prediction error of about 5.5 years. The findings reported here strongly support the use of ELOVL2 for the formulation of a single-locus epigenetic model, but the inclusion of additional, non-redundant markers is a fundamental requirement to apply a molecular model to forensic applications with more robust results.


Subject(s)
Aging , Forensic Genetics , Child, Preschool , Humans , Aging/genetics , CpG Islands , DNA Methylation , Epigenesis, Genetic , Forensic Genetics/methods
18.
J Gerontol A Biol Sci Med Sci ; 78(1): 42-50, 2023 01 26.
Article in English | MEDLINE | ID: mdl-35914804

ABSTRACT

Aging and age-related diseases have been linked to microbial dysbiosis with changes in blood bacterial DNA concentration. This condition may promote chronic low-grade inflammation, which can be further aggravated by antioxidant nutrient deficiency. Low plasma carotenoids are associated with an increased risk of inflammation and cellular damage and predict mortality. However, no evidence is yet available on the relationship between antioxidants and the blood bacterial DNA (BB-DNA). Therefore, this study aimed to compare BB-DNA from (a) GO (nonagenarian offspring), (b) age-matched controls (Randomly recruited Age-Stratified Individuals from the General population [RASIG]), and (c) spouses of GO (SGO) recruited in the MARK-AGE project, as well as to investigate the association between BB-DNA, behavior habits, Charlson Comorbidity Index (CCI), leucocyte subsets, and the circulating levels of some antioxidants and oxidative stress markers. BB-DNA was higher in RASIG than GO and SGO, whereas GO and SGO participants showed similar values. BB-DNA increased in smokers and males with CCI ≥ 2 compared with those with CCI ≤ 1 within RASIG. Moreover, BB-DNA was positively associated with lymphocyte, neutrophil, and monocyte counts, but not with self-reported dietary habits. Higher quartiles of BB-DNA were associated with low lutein and zeaxanthin and elevated malondialdehyde plasma concentrations in RASIG. BB-DNA was also positively correlated with nitric oxide levels. Herein, we provide evidence of a reduced BB-DNA in individuals from long-living families and their spouses, suggesting a decreased microbial dysbiosis and bacterial systemic translocation. BB-DNA was also associated with smoking, CCI, leukocyte subsets, and some redox biomarkers in older participants.


Subject(s)
Dysbiosis , Nonagenarians , Aged , Aged, 80 and over , Humans , Male , Antioxidants/metabolism , Biomarkers , DNA, Bacterial , Inflammation , Oxidation-Reduction , Oxidative Stress
19.
Nutrients ; 14(21)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36364703

ABSTRACT

Type 2 Diabetes (T2D) is a metabolic disease associated with long-term complications, with a multifactorial pathogenesis related to the interplay between genetic and modifiable risk factors, of which nutrition is the most relevant. In particular, the importance of proteins and constitutive amino acids (AAs) in disease susceptibility is emerging. The ability to sense and respond to changes in AA supplies is mediated by complex networks, of which AA transporters (AATs) are crucial components acting also as sensors of AA availability. This study explored the associations between polymorphisms in selected AATs genes and T2D and vascular complications in 433 patients and 506 healthy controls. Analyses revealed significant association of SLC38A3-rs1858828 with disease risk. Stratification of patients based on presence/absence of vascular complications highlighted significant associations of SLC7A8-rs3783436 and SLC38A7-rs9806843 with diabetic retinopathy. Additionally, the SLC38A9-rs4865615 resulted associated with chronic kidney disease. Notably, these genes function as AAs sensors, specifically glutamine, leucine, and arginine, linked to the main nutrient signaling pathway mammalian target of rapamycin complex 1 (mTORC1). Thus, their genetic variability may contribute to T2D by influencing the ability to properly transduce a signal activating mTORC1 in response to AA availability. In this scenario, the contribution of dietary AAs supply to disease risk may be relevant.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Amino Acid Transport Systems/genetics , Amino Acid Transport Systems/metabolism , Amino Acids/metabolism , Leucine
20.
BMC Geriatr ; 22(1): 772, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36175844

ABSTRACT

BACKGROUND: Chronic low-level inflammation is thought to play a role in many age-related diseases and to contribute to multimorbidity and to the disability related to this condition. In this framework, inflamma-miRs, an important subset of miRNA able to regulate inflammation molecules, appear to be key players. This study aimed to evaluate plasma levels of the inflamma-miR-181a in relation to age, parameters of health status (clinical, physical, and cognitive) and indices of multimorbidity in a cohort of 244 subjects aged 65- 97. METHODS: MiR-181a was isolated from plasma according to standardized procedures and its expression levels measured by qPCR. Correlation tests and multivariate regression analyses were applied on gender-stratified groups. RESULTS: MiR-181a levels resulted increased in old men, and significantly correlated with worsened blood parameters of inflammation (such as low levels of albumin and bilirubin and high lymphocyte content), particularly in females. Furthermore, we found miR-181a positively correlated with the overall multimorbidity burden, measured by CIRS Comorbidity Score, in both genders. CONCLUSIONS: These data support a role of miR-181a in age-related chronic inflammation and in the development of multimorbidity in older adults and indicate that the routes by which this miRNA influence health status are likely to be gender specific. Based on our results, we suggest that miR-181a is a promising biomarker of health status of the older population.


Subject(s)
MicroRNAs , Multimorbidity , Aged , Albumins , Bilirubin , Biomarkers , Female , Humans , Inflammation/diagnosis , Inflammation/epidemiology , Male , MicroRNAs/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...