Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Microvasc Res ; 146: 104474, 2023 03.
Article in English | MEDLINE | ID: mdl-36592817

ABSTRACT

BACKGROUND: This study aimed to evaluate the coronary function, myocardium, and epicardial adipose tissue (EAT) in female rats with severe type 1 diabetes and the effects of combined treatment with insulin and pyridoxamine (AGEs inhibitor). METHODS: Female Wistar rats were divided into groups: control (CTR, n = 13), type 1 diabetes (DM1, n = 12), type 1 diabetes treated with insulin (DM1 + INS, n = 11), and type 1 diabetes treated with insulin and pyridoxamine (DM1 + INS + PDX, n = 14). The vascular responsiveness was performed in the septal coronary artery and the protein expressions of AGE, RAGE, GPER, NF-kB was evaluated in the left ventricle (LV), as well as the reactive oxygen species (ROS) was measured in LV and in EAT. We analyzed plasma levels of glucose, estradiol, Nε-carboxymethylisine (CML), thiobarbituric acid reactive substances (TBARS), catalase (CAT), and superoxide dismutase (SOD). RESULTS: The maximal responses to ACh were reduced in the DM1 compared with the CTR group, accompanied by an increase in circulating glucose, CML, and TBARS. Additionally, the expression of NF-kB in LV and generation of ROS in the presence of MnTMPyP (SOD mimetic) were increased in the DM1 group compared with CTR. Only the combined treatment was effective for fully re-establish ACh relaxation response, NF-kB protein expression, ROS generation, and increased SOD activity in the DM1 + INS + PDX group. CONCLUSION: The reduction of the endothelium-dependent relaxation response in the septal coronary artery of female rats with severe type 1 diabetes was normalized with the combined treatment with insulin and pyridoxamine, associated with reduced inflammation and oxidative stress in the myocardium and increased circulating antioxidant activity.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Rats , Female , Animals , Insulin/pharmacology , Diabetes Mellitus, Type 1/drug therapy , Pyridoxamine/pharmacology , Reactive Oxygen Species/metabolism , Rats, Wistar , Thiobarbituric Acid Reactive Substances/metabolism , Thiobarbituric Acid Reactive Substances/pharmacology , NF-kappa B/metabolism , Diabetes Mellitus, Experimental/metabolism , Oxidative Stress , Superoxide Dismutase/metabolism , Glucose
SELECTION OF CITATIONS
SEARCH DETAIL
...