Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Database (Oxford) ; 2024: 0, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38752292

ABSTRACT

Mutational hotspots are DNA regions with an abnormally high frequency of genetic variants. Identifying whether a variant is located in a mutational hotspot is critical for determining the variant's role in disorder predisposition, development, and treatment response. Despite their significance, current databases on mutational hotspots are limited to the oncology domain. However, identifying mutational hotspots is critical for any disorder in which genetics plays a role. This is true for the world's leading cause of death: cardiac disorders. In this work, we present CardioHotspots, a literature-based database of manually curated hotspots for cardiac diseases. This is the only database we know of that provides high-quality and easily accessible information about hotspots associated with cardiac disorders. CardioHotspots is publicly accessible via a web-based platform (https://genomics-hub.pros.dsic.upv.es:3099/). Database URL: https://genomics-hub.pros.dsic.upv.es:3099/.


Subject(s)
Databases, Genetic , Heart Diseases , Mutation , Humans , Heart Diseases/genetics
2.
Article in English | MEDLINE | ID: mdl-38498764

ABSTRACT

The use in the clinical practice of the vast amount of genomic data generated by current sequencing technologies constitutes a bottleneck for the progress of Precision Medicine (PM). Various problems inherent to the genomics domain (i.e., dispersion, heterogeneity, discrepancies, lack of standardization, and data quality issues) remain unsolved. In this paper, we present the Delfos platform, a conceptual model-based solution developed following a rigorous methodological and ontological background, whose main aim is to minimize the impact of these problems when transferring the research results to clinical practice. This paper presents the SILE method that provides methodological support for the Delfos platform, the Conceptual Schema of the Genome that provides a shared understanding of the domain, and the technological architecture behind the implementation of the platform. This paper also exemplifies the use of the Delfos platform through two use cases that involve the study of the DNA variants associated with the risk of developing Dilated Cardiomyopathies and Neuroblastoma.

3.
JMIR Res Protoc ; 12: e50091, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38100226

ABSTRACT

BACKGROUND: Liver transplantation is the last therapeutic option for patients with end-stage liver disease. Postreperfusion syndrome (PRS), defined as a fall in mean arterial pressure of more than 30% within the first 5 minutes after reperfusion of at least 1 minute, can occur in liver transplantation as a deep hemodynamic instability with associated hyperfibrinolysis immediately after reperfusion of the new graft. Its incidence has remained unchanged since it was first described in 1987. PRS is related to ischemia-reperfusion (I/R) injury, whose pathophysiology involves the release of several mediators from both the donor and the recipient. The antioxidant effect of ascorbic acid has been studied in resuscitating patients with septic shock and burns. Even today, there are publications with conflicting results, and there is a need for further studies to confirm or rule out the usefulness of this drug in this group of patients. The addition of ascorbic acid to preservation solutions used in solid organ transplantation is under investigation to harness its antioxidant effect and mitigate I/R injury. Since PRS could be considered a manifestation of I/R injury, we believe that the possible beneficial effect of ascorbic acid on the occurrence of PRS should be investigated. OBJECTIVE: The aim of this randomized controlled trial is to assess the benefits of ascorbic acid over saline in the development of PRS in adult liver transplantation. METHODS: We plan to conduct a single-center randomized controlled trial at the Hospital Universitario Ramón y Cajal in Spain. A total of 70 participants aged 18 years or older undergoing liver transplantation will be randomized to receive either ascorbic acid or saline. The primary outcome will be the difference between groups in the incidence of PRS. The randomized controlled trial will be conducted under conditions of respect for fundamental human rights and ethical principles governing biomedical research involving human participants and in accordance with the international recommendations contained in the Declaration of Helsinki and its subsequent revisions. RESULTS: The enrollment process began in 2020. A total of 35 patients have been recruited so far. Data cleaning and analysis are expected to occur in the first months of 2024. Results are expected around the middle of 2024. CONCLUSIONS: We believe that this study could be particularly relevant because it will be the first to analyze the clinical effect of ascorbic acid in liver transplantation. Moreover, we believe that this study fills an important gap in the knowledge of the potential benefits of ascorbic acid in the field of liver transplantation, particularly in relation to PRS. TRIAL REGISTRATION: European Union Drug Regulating Authorities Clinical Trials Database 2020-000123-39; https://tinyurl.com/2cfzddw8; ClinicalTrials.gov NCT05754242; https://tinyurl.com/346vw7sm. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/50091.

4.
BMC Med Inform Decis Mak ; 23(Suppl 3): 256, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37946154

ABSTRACT

BACKGROUND: Genomics-based clinical diagnosis has emerged as a novel medical approach to improve diagnosis and treatment. However, advances in sequencing techniques have increased the generation of genomics data dramatically. This has led to several data management problems, one of which is data dispersion (i.e., genomics data is scattered across hundreds of data repositories). In this context, geneticists try to remediate the above-mentioned problem by limiting the scope of their work to a single data source they know and trust. This work has studied the consequences of focusing on a single data source rather than considering the many different existing genomics data sources. METHODS: The analysis is based on the data associated with two groups of disorders (i.e., oncology and cardiology) accessible from six well-known genomic data sources (i.e., ClinVar, Ensembl, GWAS Catalog, LOVD, CIViC, and CardioDB). Two dimensions have been considered in this analysis, namely, completeness and concordance. Completeness has been evaluated at two levels. First, by analyzing the information provided by each data source with regard to a conceptual schema data model (i.e., the schema level). Second, by analyzing the DNA variations provided by each data source as related to any of the disorders selected (i.e., the data level). Concordance has been evaluated by comparing the consensus among the data sources regarding the clinical relevance of each variation and disorder. RESULTS: The data sources with the highest completeness at the schema level are ClinVar, Ensembl, and CIViC. ClinVar has the highest completeness at the data level data source for the oncology and cardiology disorders. However, there are clinically relevant variations that are exclusive to other data sources, and they must be considered in order to provide the best clinical diagnosis. Although the information available in the data sources is predominantly concordant, discordance among the analyzed data exist. This can lead to inaccurate diagnoses. CONCLUSION: Precision medicine analyses using a single genomics data source leads to incomplete results. Also, there are concordance problems that threaten the correctness of the genomics-based diagnosis results.


Subject(s)
Information Sources , Precision Medicine , Humans , Precision Medicine/methods , Genomics/methods , Genome , Medical Oncology
5.
Antioxidants (Basel) ; 12(8)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37627549

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a complex and increasingly prevalent cardiometabolic disorder worldwide. As of today, NAFLD is a pathology without specific pharmacological treatment, with the Mediterranean diet (MedDiet) being the most widely used approach for its management. The objective of this study is to assess the effects of adherence to the Mediterranean diet on fatty acid plasma levels, as well as on the oxidative and inflammatory status of NAFLD patients. A total of 100 adult patients (40-60 years old) diagnosed with NAFLD and from the Balearic Islands, Spain, were classified into three groups according to their adherence to the MedDiet. Consumption was assessed using a validated 143-item semiquantitative Food Frequency Questionnaire. Food items (g/day) were categorised according to their processing using the NOVA system. Anthropometrics, blood pressure, aminotransferases, Dietary Inflammatory Index (DII), inflammatory biomarkers, and fatty acid levels were measured in the plasma of NAFLD patients. High adherence to the MedDiet is associated to a highly plant-based diet, low ultra-processed food (UPF) consumption, low intake of dietary lipids, low intake of animal fats, high intake of monounsaturated fatty acid (MUFA; mainly palmitoleic acid), low intake of saturated fatty acids (SFAs; practically all dietary SFAs), low intake of trans-fatty acids, high intake of omega-3 fatty acids (mainly eicosapentaenoic acid), a higher n-6:n-3 in ratio, low intake of omega-6 fatty acids, and a low level of interleukin-6 (IL-6). High adherence to the MedDiet is related to a better fatty acid profile in the plasma, fewer SFAs and more MUFA and polyunsaturated fatty acids (PUFAs), a plasma biochemical profile, better proinflammatory status, and decreased ultra-processed food consumption of NAFLD patients.

6.
BMC Bioinformatics ; 23(Suppl 11): 574, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37312025

ABSTRACT

BACKGROUND: All aspects of our society, including the life sciences, need a mechanism for people working within them to represent the concepts they employ to carry out their research. For the information systems being designed and developed to support researchers and scientists in conducting their work, conceptual models of the relevant domains are usually designed as both blueprints for a system being developed and as a means of communication between the designer and developer. Most conceptual modelling concepts are generic in the sense that they are applied with the same understanding across many applications. Problems in the life sciences, however, are especially complex and important, because they deal with humans, their well-being, and their interactions with the environment as well as other organisms. RESULTS: This work proposes a "systemist" perspective for creating a conceptual model of a life scientist's problem. We introduce the notion of a system and then show how it can be applied to the development of an information system for handling genomic-related information. We extend our discussion to show how the proposed systemist perspective can support the modelling of precision medicine. CONCLUSION: This research recognizes challenges in life sciences research of how to model problems to better represent the connections between physical and digital worlds. We propose a new notation that explicitly incorporates systemist thinking, as well as the components of systems based on recent ontological foundations. The new notation captures important semantics in the domain of life sciences. It may be used to facilitate understanding, communication and problem-solving more broadly. We also provide a precise, sound, ontologically supported characterization of the term "system," as a basic construct for conceptual modelling in life sciences.


Subject(s)
Biological Science Disciplines , Humans , Genomics , Precision Medicine
7.
Requir Eng ; : 1-30, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-37359152

ABSTRACT

Software-centric organisations design a loosely coupled organisation structure around strategic objectives, replicating this design to their business processes and information systems. Nowadays, dealing with business strategy in a model-driven development context is a challenge since key concepts such as the organisation's structure and strategic ends and means have been mostly addressed at the enterprise architecture level for the strategic alignment of the whole organisation, and have not been included into MDD methods as a requirements source. To overcome this issue, researchers have designed the LiteStrat, a business strategy modelling method compliant with MDD for developing information systems. This article presents an empirical comparison of LiteStrat and with i*, one of the most used models for strategic alignment in an MDD context. The article contributes with a literature review on the experimental comparison of modelling languages, the design of a study for measuring and comparing the semantic quality of modelling languages, and empirical evidence of the LiteStrat and i* differences. The evaluation consists of a 2 × 2 factorial experiment recruiting 28 undergraduate subjects. Significant differences favouring LiteStrat were found for models' accuracy and completeness, while no differences in modeller's efficiency and satisfaction were detected. These results yield evidence of the suitability of LiteStrat for business strategy modelling in a model-driven context.

8.
Biochim Biophys Acta Gene Regul Mech ; 1866(2): 194938, 2023 06.
Article in English | MEDLINE | ID: mdl-37086967

ABSTRACT

Dysregulation of cholesterol homeostasis is associated with several pathologies including cardiovascular diseases and neurological disorders such as Alzheimer's disease (AD). MicroRNAs (miRNAs) have emerged as key post-transcriptional regulators of cholesterol metabolism. We previously established the role of miR-7 in regulating insulin resistance and amyloidosis, which represents a common pathological feature between type 2 diabetes and AD. We show here an additional metabolic function of miR-7 in cholesterol biosynthesis. We found that miR-7 blocks the last steps of the cholesterol biosynthetic pathway in vitro by targeting relevant genes including DHCR24 and SC5D posttranscriptionally. Intracranial infusion of miR-7 on an adeno-associated viral vector reduced the expression of DHCR24 in the brain of wild-type mice, supporting in vivo miR-7 targeting. We also found that cholesterol regulates endogenous levels of miR-7 in vitro, correlating with transcriptional regulation through SREBP2 binding to its promoter region. In parallel to SREBP2 inhibition, the levels of miR-7 and hnRNPK (the host gene of miR-7) were concomitantly reduced in brain in a mouse model of Niemann Pick type C1 disease and in murine fatty liver, which are both characterized by intracellular cholesterol accumulation. Taken together, the results establish a novel regulatory feedback loop by which miR-7 modulates cholesterol homeostasis at the posttranscriptional level, an effect that could be exploited for therapeutic interventions against prevalent human diseases.


Subject(s)
Diabetes Mellitus, Type 2 , MicroRNAs , Oxidoreductases Acting on CH-CH Group Donors , Humans , Mice , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation , Cholesterol/metabolism , Homeostasis , Nerve Tissue Proteins/genetics , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism
9.
Neurobiol Dis ; 182: 106141, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37121555

ABSTRACT

Niemann Pick diseases types A (NPDA) and C (NPDC) are lysosomal storage disorders (LSDs) leading to cognitive impairment, neurodegeneration, and early death. NPDA and NPDC have different genetic origins, being caused by mutations in the acid sphingomyelinase (ASM) or the cholesterol transport protein NPC1, respectively. However, they share a common pathological hallmark in the accumulation of lipids in the endolysosomal compartment. Here, we tested the hypothesis that polyphenols reduce lipid overload in NPD cells by enhancing the secretion of extracellular vesicles (ECVs). We show that among the polyphenols tested, the ellagic acid metabolites, urolithin A and B, were the safest and most efficient in increasing ECV secretion. They reduced levels of accumulating lipids and lysosomal size and permeabilization in cultured bone marrow-derived macrophages and neurons from ASMko and NPC1 mutant mice, which mimic NPDA and NPDC, respectively. Moreover, oral treatment with ellagic acid reduced lipid levels, ameliorated lysosomal alterations, and diminished microglia activation in the brain of NPD mice. These results support the therapeutic value of ECV secretion and polyphenols for NPDs, which may also help treat other LSDs characterized by intracellular lipid overload.


Subject(s)
Extracellular Vesicles , Lysosomal Storage Diseases , Niemann-Pick Disease, Type A , Mice , Animals , Ellagic Acid/pharmacology , Ellagic Acid/metabolism , Sphingomyelin Phosphodiesterase/genetics , Lysosomal Storage Diseases/pathology , Niemann-Pick Disease, Type A/genetics , Lysosomes/metabolism , Phenotype , Extracellular Vesicles/metabolism , Lipids
10.
Article in English | MEDLINE | ID: mdl-37059386

ABSTRACT

Dihydrosphingolipids are lipids biosynthetically related to ceramides. An increase in ceramides is associated with enhanced fat storage in the liver, and inhibition of their synthesis is reported to prevent the appearance of steatosis in animal models. However, the precise association of dihydrosphingolipids with non-alcoholic fatty liver disease (NAFLD) is yet to be established. We employed a diet induced NAFLD mouse model to study the association between this class of compounds and disease progression. Mice fed a high-fat diet were sacrificed at 22, 30 and 40 weeks to reproduce the full spectrum of histological damage found in human disease, steatosis (NAFL) and steatohepatitis (NASH) with and without significant fibrosis. Blood and liver tissue samples were obtained from patients whose NAFLD severity was assessed histologically. To demonstrate the effect of dihydroceramides over NAFLD progression we treated mice with fenretinide an inhibitor of dihydroceramide desaturase-1 (DEGS1). Lipidomic analyses were performed using liquid chromatography-tandem mass spectrometry. Triglycerides, cholesteryl esters and dihydrosphingolipids were increased in the liver of model mice in association with the degree of steatosis and fibrosis. Dihydroceramides increased with the histological severity observed in liver samples of mice (0.024 ± 0.003 nmol/mg vs 0.049 ± 0.005 nmol/mg, non-NAFLD vs NASH-fibrosis, p < 0.0001) and patients (0.105 ± 0.011 nmol/mg vs 0.165 ± 0.021 nmol/mg, p = 0.0221). Inhibition of DEGS1 induce a four-fold increase in dihydroceramides improving steatosis but increasing the inflammatory activity and fibrosis. In conclusion, the degree of histological damage in NAFLD correlate with dihydroceramide and dihydrosphingolipid accumulation. LAY SUMMARY: Accumulation of triglyceride and cholesteryl ester lipids is the hallmark of non-alcoholic fatty liver disease. Using lipidomics, we examined the role of dihydrosphingolipids in NAFLD progression. Our results demonstrate that de novo dihydrosphingolipid synthesis is an early event in NAFLD and the concentrations of these lipids are correlated with histological severity in both mouse and human disease.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Animals , Mice , Non-alcoholic Fatty Liver Disease/pathology , Fibrosis , Triglycerides , Ceramides
11.
Med Sci Educ ; 33(1): 275-286, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36569366

ABSTRACT

Extended reality (XR) has emerged as an innovative simulation-based learning modality. An integrative review was undertaken to explore the nature of evidence, usage, and effectiveness of XR modalities in medical education. One hundred and thirty-three (N = 133) studies and articles were reviewed. XR technologies are commonly reported in surgical and anatomical education, and the evidence suggests XR may be as effective as traditional medical education teaching methods and, potentially, a more cost-effective means of curriculum delivery. Further research to compare different variations of XR technologies and best applications in medical education and training are required to advance the field. Supplementary Information: The online version contains supplementary material available at 10.1007/s40670-022-01698-4.

12.
BMC Bioinformatics ; 23(Suppl 11): 491, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36396980

ABSTRACT

BACKGROUND: Genomics and virology are unquestionably important, but complex, domains being investigated by a large number of scientists. The need to facilitate and support work within these domains requires sharing of databases, although it is often difficult to do so because of the different ways in which data is represented across the databases. To foster semantic interoperability, models are needed that provide a deep understanding and interpretation of the concepts in a domain, so that the data can be consistently interpreted among researchers. RESULTS: In this research, we propose the use of conceptual models to support semantic interoperability among databases and assess their ontological clarity to support their effective use. This modeling effort is illustrated by its application to the Viral Conceptual Model (VCM) that captures and represents the sequencing of viruses, inspired by the need to understand the genomic aspects of the virus responsible for COVID-19. For achieving semantic clarity on the VCM, we leverage the "ontological unpacking" method, a process of ontological analysis that reveals the ontological foundation of the information that is represented in a conceptual model. This is accomplished by applying the stereotypes of the OntoUML ontology-driven conceptual modeling language.As a result, we propose a new OntoVCM, an ontologically grounded model, based on the initial VCM, but with guaranteed interoperability among the data sources that employ it. CONCLUSIONS: We propose and illustrate how the unpacking of the Viral Conceptual Model resolves several issues related to semantic interoperability, the importance of which is recognized by the "I" in FAIR principles. The research addresses conceptual uncertainty within the domain of SARS-CoV-2 data and knowledge.The method employed provides the basis for further analyses of complex models currently used in life science applications, but lacking ontological grounding, subsequently hindering the interoperability needed for scientists to progress their research.


Subject(s)
COVID-19 , Semantics , Humans , SARS-CoV-2 , Information Storage and Retrieval , Models, Theoretical
13.
BMC Bioinformatics ; 23(Suppl 11): 472, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36352353

ABSTRACT

BACKGROUND: Precision medicine is a promising approach that has revolutionized disease prevention and individualized treatment. The DELFOS oracle is a model-driven genomics platform that aids clinicians in identifying relevant variations that are associated with diseases. In its previous version, the DELFOS oracle did not consider the high degree of variability of genomics data over time. However, changes in genomics data have had a profound impact on clinicians' work and pose the need for changing past, present, and future clinical actions. Therefore, our objective in this work is to consider changes in genomics data over time in the DELFOS oracle. METHODS: Our objective has been achieved through three steps. First, we studied the characteristics of each database from which the DELFOS oracle extracts data. Second, we characterized which genomics concepts of the conceptual schema that supports the DELFOS oracle change over time. Third, we updated the DELFOS Oracle so that it can manage the temporal dimension. To validate our approach, we carried out a use case to illustrate how the new version of the DELFOS oracle handles the temporal dimension. RESULTS: Three events can change genomics data, namely, the addition of a new variation, the addition of a new link between a variation and a phenotype, and the update of a link between a variation and a phenotype. These events have been linked to the entities of the conceptual model that are affected by them. Finally, a new version of the DELFOS oracle that can deal with the temporal dimension has been implemented. CONCLUSION: Huge amounts of genomics data that is associated with diseases change over time, impacting patients' diagnosis and treatment. Including this information in the DELFOS oracle added an extra layer of complexity, but using a model-driven based approach mitigated the cost of implementing the needed changes. The new version handles the temporal dimension appropriately and eases clinicians' work.


Subject(s)
Genomics , Precision Medicine , Genomics/methods , Phenotype
14.
Biomedicines ; 10(6)2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35740338

ABSTRACT

Exosomes/microvesicles originate from multivesicular bodies that allow the secretion of endolysosome components out of the cell. In the present work, we investigated the effects of rottlerin, a polyphenol, on exosome/microvesicle secretion in a model of intracellular lipid trafficking impairment, and elucidated the mechanism of action. In a model of lipid trafficking impairment in C6 glia cells, rottlerin increased ceramide levels, while decreasing hexosylceramide content. This was accompanied by increased exosome/microvesicle secretion, thereby reducing the concentration of lipids in the endolysosomal compartment. The reduction of hexosylceramide levels by rottlerin was attributed to the increase of ß-glucosidase (glucosylceramidase) activity, and the effects of rottlerin were abrogated by ß-glucosidase inhibitors such as isofagomine D-tartrate and AMP-deoxynojirimycin. Moreover, treatment with ML-266, a potent activator of the ß-glucosidase enzyme, recapitulated the effects of rottlerin on the sphingolipid profile and exosome/microvesicle secretion. Finally, inhibition of AMPK (AMP-activated protein kinase) using compound C prevented both exosome/microvesicle secretion and the elimination of endolysosome lipids, which were promoted by rottlerin. The results showed that the decrease in intracellular lipid deposition induced by rottlerin was mediated by ß-glucosidase activation and exosome/microvesicle release via the AMPK pathway. Rottlerin consumption could represent an additional health benefit in lysosomal deposition diseases.

15.
Mol Vis ; 28: 492-499, 2022.
Article in English | MEDLINE | ID: mdl-37089699

ABSTRACT

Spectral domain-optical coherence tomography (SD-OCT) has become an essential tool for assessing ocular tissues in live subjects and conducting research on ocular development, health, and disease. The processing of SD-OCT images, particularly those from non-mammalian species, is a labor-intensive manual process due to a lack of automated analytical programs. This paper describes the development and implementation of a novel computer algorithm for the quantitative analysis of SD-OCT images of live teleost eyes. Automated segmentation processing of SD-OCT images of retinal layers was developed using a novel algorithm based on thresholding. The algorithm measures retinal thickness characteristics in a large volume of imaging data of teleost ocular structures in a short time, providing increased accuracy and repeatability of SD-OCT image analysis over manual measurements. The algorithm also generates hundreds of retinal thickness measurements per image for a large number of images for a given dataset. Meanwhile, heat mapping software that plots SD-OCT image measurements as a color gradient was also created. This software directly converts the measurements of each processed image to represent changes in thickness across the whole retinal scan. It also enables 2D and 3D visualization of retinal thickness across the scan, facilitating specimen comparison and localization of areas of interest. The study findings showed that the novel algorithm is more accurate, reliable, and repeatable than manual SD-OCT analysis. The adaptability of the algorithm makes it potentially suitable for analyzing SD-OCT scans of other non-mammalian species.


Subject(s)
Retina , Tomography, Optical Coherence , Humans , Retina/diagnostic imaging , Algorithms , Software , Image Processing, Computer-Assisted
16.
Int J Mol Sci ; 22(22)2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34830406

ABSTRACT

Nephrotoxicity is a major complication of cisplatin-based chemotherapy, leading to acute kidney injury in ca. 30% of patients, with no preventive intervention or treatment available for clinical use. Cilastatin has proved to exert a nephroprotective effect for cisplatin therapies in in vitro and in vivo models, having recently entered clinical trials. A deeper understanding at the molecular level of cisplatin-induced renal damage and the effect of potential protective agents could be key to develop successful nephroprotective therapies and to establish new biomarkers of renal damage and nephroprotection. A targeted lipidomics approach, using LC-MS/MS, was employed for the quantification of 108 lipid species (comprising phospholipids, sphingolipids, and free and esterified cholesterol) in kidney cortex and medulla extracts from rats treated with cisplatin and/or cilastatin. Up to 56 and 63 lipid species were found to be altered in the cortex and medulla, respectively, after cisplatin treatment. Co-treatment with cilastatin attenuated many of these lipid changes, either totally or partially with respect to control levels. Multivariate analysis revealed that lipid species can be used to discriminate renal damage and nephroprotection, with cholesterol esters being the most discriminating species, along with sulfatides and phospholipids. Potential diagnostic biomarkers of cisplatin-induced renal damage and cilastatin nephroprotection were also found.


Subject(s)
Acute Kidney Injury/drug therapy , Cilastatin/pharmacology , Kidney/drug effects , Lipids/genetics , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Apoptosis/drug effects , Chromatography, Liquid , Cisplatin/adverse effects , Glomerular Filtration Rate/drug effects , Humans , Kidney/pathology , Lipid Metabolism/genetics , Lipidomics , Rats , Tandem Mass Spectrometry
17.
Anal Bioanal Chem ; 413(15): 4077-4090, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33907864

ABSTRACT

Improving the reliability of quantification in lipidomic analyses is crucial for its successful application in the discovery of new biomarkers or in clinical practice. In this study, we propose a workflow to improve the accuracy and precision of lipidomic results issued by the laboratory. Lipid species from 11 classes were analyzed by a targeted RPLC-MRM/MS method. The peak areas of species were used to estimate concentrations by an internal standard calibration approach (IS-calibration) and by an alternative normalization signal calibration schema (NS-calibration). The latter uses a long-term reference plasma material as a matrix-matched external calibrator whose accuracy was compared to the NIST SRM-1950 mean consensus values reported by the Interlaboratory Lipidomics Comparison Exercise. The bias of lipid concentrations showed a good accuracy for 69 of 89 quantified lipids. The quantitation of species by the NS-calibration schema improved the within- and between-batch reproducibility in quality control samples, in comparison to the usual IS-calibration approach. Moreover, the NS-calibration workflow improved the robustness of the lipidomics measurements reducing the between-batch variability (relative standard deviation <10% for 95% of lipid species) in real conditions tested throughout the analysis of 120 plasma samples. In addition, we provide a free access web tool to obtain the concentration of lipid species by the two previously mentioned quantitative approaches, providing an easy follow-up of quality control tasks related to lipidomics.


Subject(s)
Chromatography, Liquid/methods , Lipidomics , Mass Spectrometry/methods , Calibration , Humans , Quality Control , Reference Standards
18.
Int J Mol Sci ; 22(8)2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33920193

ABSTRACT

Atypical or second-generation antipsychotics are used in the treatment of psychosis and behavioral problems in older persons with dementia. However, these pharmaceutical drugs are associated with an increased risk of stroke in such patients. In this study, we evaluated the effects of risperidone treatment on phospholipid and sphingolipid composition and lipid raft function in peripheral blood mononuclear cells (PBMCs) of older patients (mean age >88 years). The results showed that the levels of dihydroceramides, very-long-chain ceramides, and lysophosphatidylcholines decreased in PBMCs of the risperidone-treated group compared with untreated controls. These findings were confirmed by in vitro assays using human THP-1 monocytes. The reduction in the levels of very-long-chain ceramides and dihydroceramides could be due to the decrease in the expression of fatty acid elongase 3, as observed in THP-1 monocytes. Moreover, risperidone disrupted lipid raft domains in the plasma membrane of PBMCs. These results indicated that risperidone alters phospholipid and sphingolipid composition and lipid raft domains in PBMCs of older patients, potentially affecting multiple signaling pathways associated with these membrane domains.


Subject(s)
Ceramides/metabolism , Lipid Metabolism/drug effects , Psychotic Disorders/drug therapy , Aged , Aged, 80 and over , Antipsychotic Agents/pharmacology , Cell Membrane/genetics , Cell Membrane/metabolism , Female , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Lipid Metabolism/genetics , Lysophospholipids/genetics , Male , Olanzapine/pharmacology , Psychotic Disorders/blood , Psychotic Disorders/pathology , Risperidone/pharmacology , Sphingolipids/genetics
19.
Softw Syst Model ; 20(4): 921-938, 2021.
Article in English | MEDLINE | ID: mdl-33488323

ABSTRACT

General ontology is a prominent theoretical foundation for information technology analysis, design, and development. Ontology is a branch of philosophy which studies what exists in reality. A widely used ontology in information systems, especially for conceptual modeling, is the BWW (Bunge-Wand-Weber), which is based on ideas of the philosopher and physicist Mario Bunge, as synthesized by Wand and Weber. The ontology was founded on an early subset of Bunge's philosophy; however, many of Bunge's ideas have evolved since then. An important question, therefore, is: do the more recent ideas expressed by Bunge call for a new ontology? In this paper, we conduct an analysis of Bunge's earlier and more recent works to address this question. We present a new ontology based on Bunge's later and broader works, which we refer to as Bunge's Systemist Ontology (BSO). We then compare BSO to the constructs of BWW. The comparison reveals both considerable overlap between BSO and BWW, as well as substantial differences. From this comparison and the initial exposition of BSO, we provide suggestions for further ontology studies and identify research questions that could provide a fruitful agenda for future scholarship in conceptual modeling and other areas of information technology.

20.
Brief Bioinform ; 22(1): 45-54, 2021 01 18.
Article in English | MEDLINE | ID: mdl-32533135

ABSTRACT

With advances in genomic sequencing technology, a large amount of data is publicly available for the research community to extract meaningful and reliable associations among risk genes and the mechanisms of disease. However, this exponential growth of data is spread in over thousand heterogeneous repositories, represented in multiple formats and with different levels of quality what hinders the differentiation of clinically valid relationships from those that are less well-sustained and that could lead to wrong diagnosis. This paper presents how conceptual models can play a key role to efficiently manage genomic data. These data must be accessible, informative and reliable enough to extract valuable knowledge in the context of the identification of evidence supporting the relationship between DNA variants and disease. The approach presented in this paper provides a solution that help researchers to organize, store and process information focusing only on the data that are relevant and minimizing the impact that the information overload has in clinical and research contexts. A case-study (epilepsy) is also presented, to demonstrate its application in a real context.


Subject(s)
Data Management/methods , Genomics/methods , Data Systems , Epilepsy/genetics , Genetic Predisposition to Disease , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...