Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Rep Prog Phys ; 87(3)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38262048

ABSTRACT

Crystal structures and physical properties of four families of Al-rich ternary uranium compounds with transition metals (TE) are reviewed, namely UTE2Al20, UTE2Al10, U6TE4Al43, and U3TE4Al12. The compounds can be described as consisting of 1 (isolated), 2 (dumbbells) or 3 (triangles) uranium atom clusters, surrounded (1-2-20, 1-2-10 and 6-4-43) or not (3-4-12) by large cages, which strongly influence their magnetic and related properties. Indeed, the ground states of the described systems evolve from Curie-like paramagnetism in the case of the phases with well-isolated, single U-atoms, to complex magnetic order or possible frustrated magnetism in the case of the systems with uranium triangles forming a breathing kagome lattice. We argue that the four families of uranium aluminides described in this review provide a unique opportunity to study magnetic interactions between U magnetic moments while gradually increasing the number of their nearest magnetic neighbors, and may also be helpful in understanding the fundamental origin of magnetic freezing phenomena.

2.
Water Res ; 229: 119472, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36535086

ABSTRACT

In this study, changes in the reactivity of nanoscale zerovalent iron (NZVI) in five different groundwater (GW) systems under anoxic and oxic conditions were examined over a wide range of aging time (0 - 60 d). p-nitrophenol (p-NP) was used as a redox-sensitive probe, whereas nalidixic acid (NA), a typical antibiotic found in the natural environment, was used as a sorbing compound. Investigation of the p-NP reduction in pure water systems showed that NZVI lost 41% and 98% of its reductive activity under anoxic and oxic conditions after 60 d, while enhancement of its reactivity was observed after short-term aging in GW (1 - 5 d), followed by a further decline. This behavior has been ascribed to the formation of secondary Fe(II)-bearing phases, including magnetite and green rust, resulting from NZVI aging in GW. Adsorption experiments revealed that GW-anoxic-aged NZVI samples exhibited a good affinity toward NA, and a greater NA adsorption (∼27 µmol g - 1) than that of pristine NZVI (∼2 µmol g - 1) at alkaline pH values. Surface complexation modeling showed that the enhanced adsorption of NA onto secondary minerals can be attributed to the Fe(II)-NA surface complexation. This considerable change in the reductive ability and the adsorption capacity of NZVI arising from groundwater corrosion calls for greater attention to be paid in assessment studies, where NZVI is injected for long-term remediation in groundwater.


Subject(s)
Groundwater , Water Pollutants, Chemical , Iron/chemistry , Water Pollutants, Chemical/chemistry , Groundwater/chemistry , Oxidation-Reduction , Ferrosoferric Oxide
3.
J Hazard Mater ; 433: 128739, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35366449

ABSTRACT

Although the oxidative capacity of manganese oxides has been widely investigated, potential changes of the surface reactivity in dynamic anoxic/oxic environments have been often overlooked. In this study, we showed that the reactivity of layer structured manganese oxide (birnessite) was highly sensitive to variable redox conditions within environmentally relevant ranges of pH (4.0 - 8.0), ionic strength (0-100 mM NaCl) and Mn(II)/MnO2 molar ratio (0-0.58) using ofloxacine (OFL), a typical antibiotic, as a target contaminant. In oxic conditions, OFL removal was enhanced relative to anoxic environments under alkaline conditions. Surface-catalyzed oxidation of Mn(II) enabled the formation of more reactive Mn(III) sites for OFL oxidation. However, an increase in Mn(II)/MnO2 molar ratio suppressed MnO2 reactivity, probably because of competitive binding between Mn(II) and OFL and/or modification in MnO2 surface charge. Monovalent cations (e.g., Na+) may compensate the charge deficiency caused by the presence of Mn(III), and affect the aggregation of MnO2 particles, particularly under oxic conditions. An enhancement in the removal efficiency of OFL was then confirmed in the dynamic two-step anoxic/oxic process, which emulates oscillating redox conditions in environmental settings. These findings call for a thorough examination of the reactivity changes at environmental mineral surfaces (e.g., MnO2) in natural systems that may be subjected to alternation between anaerobic and oxygenated conditions.


Subject(s)
Manganese Compounds , Oxides , Adsorption , Oxidation-Reduction
4.
J Am Chem Soc ; 144(4): 1846-1860, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35040653

ABSTRACT

Understanding the mechanism that connects heat transport with crystal structures and order/disorder phenomena is crucial to develop materials with ultralow thermal conductivity (κ), for thermoelectric and thermal barrier applications, and requires the study of highly pure materials. We synthesized the n-type sulfide CuPbBi5S9 with an ultralow κ value of 0.6-0.4 W m-1 K-1 in the temperature range 300-700 K. In contrast to prior studies, we show that this synthetic sulfide does not exhibit the ordered gladite mineral structure but instead forms a copper-deficient disordered aikinite structure with partial Pb replacement by Bi, according to the chemical formula Cu1/3□2/3Pb1/3Bi5/3S3. By combining experiments and lattice dynamics calculations, we elucidated that the ultralow κ value of this compound is due to very low energy optical modes associated with Pb and Bi ions and, to a smaller extent, Cu. This vibrational complexity at low energy hints at substantial anharmonic effects that contribute to enhance phonon scattering. Importantly, we show that this aikinite-type sulfide, despite being a poor semiconductor, is a potential matrix for designing novel, efficient n-type thermoelectric compounds with ultralow κ values. A drastic improvement in the carrier concentration and thermoelectric figure of merit have been obtained upon Cl for S and Bi for Pb substitution. The Cu1-x□xPb1-xBi1+xS3 series provides a new, interesting structural prototype for engineering n-type thermoelectric sulfides by controlling disorder and optimizing doping.

5.
Environ Sci Technol ; 54(1): 476-485, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31830784

ABSTRACT

While the use of transition metal oxides in catalyzing advanced oxidation reactions has been widely investigated, very few reports have focused on how the preliminary contact of oxides with target compounds may affect the succession of reaction. In this study, we examined the adsorption and electron transfer reactions of two fluoroquinolones, flumequine (FLU), and norfloxacin (NOR), with goethite (α-FeOOH) or manganese (Mn) oxide, and their impact on the subsequent mineralization of target compounds using H2O2 or S2O82- under UVA irradiation. Intriguingly, higher total organic carbon (TOC) removal was achieved when antibiotics and metal oxides were allowed for preequilibration before starting the oxidation reaction. The rate and extent of TOC removal are strongly dependent on the molecule structure and the redox-active mineral used, and much less on the preequilibration time. This high efficiency can be ascribed to the presence of reduced metal ions, chemically or photochemically generated during the first stage, onto oxide minerals. Oxide-bound MnII plays a crucial role in catalyzing oxidant decomposition and then producing greater amounts of radical species through a photoassisted redox cycle, regardless of the underlying surface, MnIVO2 or MnIIIOOH. This finding will be of fundamental and practical significance to Mn-based oxidation reactions and wastewater treatment processes.


Subject(s)
Hydrogen Peroxide , Manganese Compounds , Adsorption , Metals , Oxidation-Reduction , Oxides
6.
Inorg Chem ; 58(8): 5082-5088, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30912933

ABSTRACT

In order to achieve a significant size reduction to get ultrasmall upconverting nanoparticles (UCNPs) following a thermal coprecipitation pathway, we identified two critical points: the UCNP precursor mixing and high-temperature heating steps. Significant differences could be observed according to the way the inorganic sodium and fluoride sources were mixed to the rare-earth oleate before the high-temperature heating step. More interestingly, accurate monitoring of the high-temperature heating step using microwave (MW) dielectric heating yielded major improvement toward ultrasmall UCNPs. Thus, hexagonal, Tm-doped sub-5-nm UCNPs with an unusual Na(Yb-Gd)F4 matrix with 53% Yb were produced, displaying satisfactory luminescence. Noticeably, MW heating was achieved in a weakly MW-absorbing oleic acid (OA)/octadecene mixture, and the influence of the OA content composition on the MW heating efficiency is discussed in this report.

7.
Inorg Chem ; 57(5): 2546-2557, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29431434

ABSTRACT

Previous experimental and theoretical studies revealed that carbon insertion into the RCr2Si2 compounds drastically affects the magnetic behavior, since chromium does not carry any magnetic moment in RCr2Si2C (R = Y, La-Sm, Gd-Er) compounds in contrast to RCr2Si2 (R = Y, Sm, Gd-Lu, Th) compounds. In this study, we report on the unexpected magnetic ordering of chromium atoms in the isotype quaternary UCr2Si2C compound. While specific heat and magnetic measurements suggest a Pauli paramagnetic behavior, neutron powder diffraction reveals an antiferromagnetic ordering of the chromium substructure at high temperature ( TN > 300 K), while that of uranium remains nonmagnetically ordered down to 2 K. Its magnetic behavior, inverse in comparison to the RCr2Si2C carbides involving a magnetic lanthanide, is discussed in relation with the singularity of its crystal structure among the series. Moreover, the crystallographic structures and the structural stability of UCr2Si2C and of two other quaternary U-Cr-Si-C compounds (i.e., UCr3Si2C and U2Cr3Si2C3), based on the full occupancy of interstitial sites by carbon atoms, are discussed and compared to those of the related ternary intermetallics. Finally, the low-temperature form of UCr2Si2, corresponding to a displacive transformation around 210 K of the ThCr2Si2-type structure, is reinvestigated by considering a higher symmetry monoclinic unit cell ( C2/ m) instead of the previously reported triclinic cell ( P1̅). The antiferromagnetic ordering at low temperature ( TN = 30(2) K) of the uranium substructure is confirmed, and its magnetic structure is reanalyzed and discussed considering the monoclinic crystal structure.

8.
Inorg Chem ; 54(19): 9646-55, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26371628

ABSTRACT

A single crystal of U3Fe2Ge7 was synthesized by the tin-flux method, and its structural and electronic properties were studied. The compound crystallizes in the orthorhombic crystal structure of La3Co2Sn7 type with two Wyckoff sites for the U atoms. U3Fe2Ge7 displays a ferromagnetic order below TC = 62 K. Magnetization measurements in static (up to 14 T) and pulsed (up to 60 T) magnetic fields revealed a strong two-ion uniaxial magnetic anisotropy. The easy magnetization direction is along the c axis and the spontaneous magnetic moment is 3.3 µB per formula unit at 2 K. The moment per Fe atom is 0.2 µB, as follows from Mössbauer spectroscopy. The magnetic moments are oriented perpendicular to the shortest inter-uranium distances that occur within the zigzag chains in the ab plane, contrary to other U-based isostructural compounds. The magnetization along the a axis reveals a first-order magnetization process that allows for a quantitative description of the magnetic anisotropy in spite of its enormous energetic strength. The strong anisotropy is reflected in the specific heat and electrical resistivity that are affected by a gap in magnon spectrum.

SELECTION OF CITATIONS
SEARCH DETAIL
...