Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters











Publication year range
1.
bioRxiv ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38979178

ABSTRACT

The behavioral, sensory, and neural bases of vertebrate navigation are primarily described in mammals and birds. However, we know much less about navigational abilities and mechanisms of vertebrates that move on smaller scales, such as amphibians. To address this knowledge gap, we conducted an extensive field study on navigation in the cane toad, Rhinella marina. First, we performed a translocation experiment to describe how invasive toads in Hawai'i navigate home following displacements of up to one kilometer. Next, we tested the effect of olfactory and magnetosensory manipulations on homing, as these senses are most commonly associated with amphibian navigation. We found that neither ablation alone prevents homing, suggesting that toad navigation is multimodal. Finally, we tested the hypothesis that the medial pallium, the amphibian homolog to the hippocampus, is involved in homing. By comparing neural activity across homing and non-homing toads, we found evidence supporting the involvement of the medial pallium, lateral pallium, and septum in navigation, suggesting a conservation of neural structures supporting navigation across vertebrates. Our study lays the foundation to understand the behavioral, sensory, and neural bases of navigation in amphibians and to further characterize the evolution of behavior and neural structures in vertebrates.

2.
Elife ; 112022 11 15.
Article in English | MEDLINE | ID: mdl-36377473

ABSTRACT

Sex differences in vertebrate spatial abilities are typically interpreted under the adaptive specialization hypothesis, which posits that male reproductive success is linked to larger home ranges and better navigational skills. The androgen spillover hypothesis counters that enhanced male spatial performance may be a byproduct of higher androgen levels. Animal groups that include species where females are expected to outperform males based on life-history traits are key for disentangling these hypotheses. We investigated the association between sex differences in reproductive strategies, spatial behavior, and androgen levels in three species of poison frogs. We tracked individuals in natural environments to show that contrasting parental sex roles shape sex differences in space use, where the sex performing parental duties shows wider-ranging movements. We then translocated frogs from their home areas to test their navigational performance and found that the caring sex outperformed the non-caring sex only in one out of three species. In addition, males across species displayed more explorative behavior than females and androgen levels correlated with explorative behavior and homing accuracy. Overall, we reveal that poison frog reproductive strategies shape movement patterns but not necessarily navigational performance. Together this work suggests that prevailing adaptive hypotheses provide an incomplete explanation of sex differences in spatial abilities.


Subject(s)
Anura , Behavior, Animal , Animals , Female , Male , Androgens , Anura/physiology , Sex Factors , Behavior, Animal/physiology
3.
J Exp Biol ; 225(2)2022 01 15.
Article in English | MEDLINE | ID: mdl-34940881

ABSTRACT

Many animals exhibit complex navigation over different scales and environments. Navigation studies in amphibians have largely focused on species with life histories that require accurate spatial movements, such as territorial poison frogs and migratory pond-breeding amphibians that show fidelity to mating sites. However, other amphibian species have remained relatively understudied, leaving open the possibility that well-developed navigational abilities are widespread. Here, we measured short-term space use in non-territorial, non-migratory cane toads (Rhinella marina) in their native range in French Guiana. After establishing site fidelity, we tested their ability to return home following translocations of 500 and 1000 m. Toads were able to travel in straight trajectories back to home areas, suggesting navigational abilities similar to those observed in amphibians with more complex spatial behavior. These observations break with the current paradigm of amphibian navigation and suggest that navigational abilities may be widely shared among amphibians.


Subject(s)
Amphibians , Spatial Behavior , Animals , Bufo marinus
4.
J Exp Biol ; 224(24)2021 12 15.
Article in English | MEDLINE | ID: mdl-34845497

ABSTRACT

For animals to survive until reproduction, it is crucial that juveniles successfully detect potential predators and respond with appropriate behavior. The recognition of cues originating from predators can be innate or learned. Cues of various modalities might be used alone or in multi-modal combinations to detect and distinguish predators but studies investigating multi-modal integration in predator avoidance are scarce. Here, we used wild, naive tadpoles of the Neotropical poison frog Allobates femoralis ( Boulenger, 1884) to test their reaction to cues with two modalities from two different sympatrically occurring potential predators: heterospecific predatory Dendrobates tinctorius tadpoles and dragonfly larvae. We presented A. femoralis tadpoles with olfactory or visual cues, or a combination of the two, and compared their reaction to a water control in a between-individual design. In our trials, A. femoralis tadpoles reacted to multi-modal stimuli (a combination of visual and chemical information) originating from dragonfly larvae with avoidance but showed no reaction to uni-modal cues or cues from heterospecific tadpoles. In addition, visual cues from conspecifics increased swimming activity while cues from predators had no effect on tadpole activity. Our results show that A. femoralis tadpoles can innately recognize some predators and probably need both visual and chemical information to effectively avoid them. This is the first study looking at anti-predator behavior in poison frog tadpoles. We discuss how parental care might influence the expression of predator avoidance responses in tadpoles.


Subject(s)
Odonata , Poisons , Animals , Cues , Larva/physiology , Predatory Behavior , Ranidae/physiology
5.
J Exp Biol ; 224(21)2021 11 01.
Article in English | MEDLINE | ID: mdl-34608492

ABSTRACT

Breeding sites are often a limited and ephemeral resource for rainforest frogs. This resource limitation has driven the evolution of diverse reproductive strategies that increase offspring survival. For example, poison frogs shuttle their tadpoles from terrestrial clutches to aquatic rearing sites, using various cues to assess pool suitability. Yet, how frogs find new pools is unknown. We tested the role of odor cues in the process of finding tadpole deposition sites by the poison frog Allobates femoralis. We created 60 artificial pools grouped into three conditions: stagnant water, tadpole water and clean water control. Fifteen pools were discovered within 6 days, with more tadpoles and more frogs directly observed at pools with stagnant odor cues. Our findings suggest that frogs use odor cues associated with stagnant water for the initial discovery of new breeding pools. These cues may be good indicators of pool stability and increased likelihood of tadpole survival.


Subject(s)
Odorants , Rainforest , Animals , Anura , Larva , Water
6.
Ecol Evol ; 11(13): 9021-9038, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34257942

ABSTRACT

Many species of Neotropical frogs have evolved to deposit their tadpoles in small water bodies inside plant structures called phytotelmata. These pools are small enough to exclude large predators but have limited nutrients and high desiccation risk. Here, we explore phytotelm use by three common Neotropical species: Osteocephalus oophagus, an arboreal frog that periodically feeds eggs to its tadpoles; Dendrobates tinctorius, a tadpole-transporting poison frog with cannibalistic tadpoles; and Allobates femoralis, a terrestrial tadpole-transporting poison frog with omnivorous tadpoles. We found that D. tinctorius occupies pools across the chemical and vertical gradient, whereas A. femoralis and O. oophagus appear to have narrower deposition options that are restricted primarily by pool height, water capacity, alkalinity, and salinity. Dendrobates tinctorius tadpoles are particularly flexible and can survive in a wide range of chemical, physical, and biological conditions, whereas O. oophagus seems to prefer small, clear pools and A. femoralis occupies medium-sized pools with abundant leaf litter and low salinity. Together, these results show the possible niche partitioning of phytotelmata among frogs and provide insight into stressors and resilience of phytotelm breeders.

7.
PeerJ ; 8: e8920, 2020.
Article in English | MEDLINE | ID: mdl-32337103

ABSTRACT

Longer-range movements of anuran amphibians such as mass migrations and habitat invasion have received a lot of attention, but fine-scale spatial behavior remains largely understudied. This gap is especially striking for species that show long-term site fidelity and display their whole behavioral repertoire in a small area. Studying fine-scale movement with conventional capture-mark-recapture techniques is difficult in inconspicuous amphibians: individuals are hard to find, repeated captures might affect their behavior and the number of data points is too low to allow a detailed interpretation of individual space use and time budgeting. In this study, we overcame these limitations by equipping females of the Brilliant-Thighed Poison Frog (Allobates femoralis) with a tag allowing frequent monitoring of their location and behavior. Neotropical poison frogs are well known for their complex behavior and diverse reproductive and parental care strategies. Although the ecology and behavior of the polygamous leaf-litter frog Allobates femoralis is well studied, little is known about the fine-scale space use of the non-territorial females who do not engage in acoustic and visual displays. We tracked 17 females for 6 to 17 days using a harmonic direction finder to provide the first precise analysis of female space use in this species. Females moved on average 1 m per hour and the fastest movement, over 20 m per hour, was related to a subsequent mating event. Traveled distances and activity patterns on days of courtship and mating differed considerably from days without reproduction. Frogs moved more on days with lower temperature and more precipitation, but mating seemed to be the main trigger for female movement. We observed 21 courtships of 12 tagged females. For seven females, we observed two consecutive mating events. Estimated home ranges after 14 days varied considerably between individuals and courtship and mating associated space use made up for ∼30% of the home range. Allobates femoralis females spent large parts of their time in one to three small centers of use. Females did not adjust their time or space use to the density of males in their surroundings and did not show wide-ranging exploratory behavior. Our study demonstrates how tracking combined with detailed behavioral observations can reveal the patterns and drivers of fine-scale spatial behavior in sedentary species.

8.
PeerJ ; 7: e7648, 2019.
Article in English | MEDLINE | ID: mdl-31576237

ABSTRACT

Descriptive studies of natural history have always been a source of knowledge on which experimental work and scientific progress rely. Poison frogs are a well-studied group of small Neotropical frogs with diverse parental behaviors, distinct calls, and bright colors that warn predators about their toxicity; and a showcase of advances in fundamental biology through natural history observations. The dyeing poison frog, Dendrobates tinctorius, is emblematic of the Guianas region, widespread in the pet trade, and increasingly popular in research. This species shows several unusual behaviors, such as the lack of advertisement calls and the aggregation around tree-fall gaps, which remain poorly described and understood. Here, we summarize our observations from a natural population of D. tinctorius in French Guiana collected over various field trips between 2009 and 2017; our aim is to provide groundwork for future fundamental and applied research spanning parental care, animal dispersal, disease spread, habitat use in relation to color patterns, and intra-specific communication, to name a few. We report sex differences in habitat use and the striking invasion of tree-fall gaps; describe their courtship and aggressive behaviors; document egg development and tadpole transport; and discuss how the knowledge generated by this study could set the grounds for further research on the behavior, ecology, and conservation of this species.

9.
Evol Ecol ; 33(4): 613-623, 2019.
Article in English | MEDLINE | ID: mdl-31404198

ABSTRACT

Parents can influence offspring dispersal through breeding site selection, competition, or by directly moving their offspring during parental care. Many animals move their young, but the potential role of this behavior in dispersal has rarely been investigated. Neotropical poison frogs (Dendrobatidae) are well known for shuttling their tadpoles from land to water, but the associated movements have rarely been quantified and the potential function of tadpole transport in dispersal has not been addressed. We used miniature radio-transmitters to track the movements of two poison frog species during tadpole transport, and surveyed pool availability in the study area. We found that parental males move farther than expected by the distance to the nearest pool and spread their offspring across multiple pools. We argue that these movement patterns cannot be fully explained by pool quality and availability, and suggest that adaptive benefits related to offspring dispersal also shape the spatial behavior of parental frogs.

10.
J Exp Biol ; 221(Pt 2)2018 01 29.
Article in English | MEDLINE | ID: mdl-29217629

ABSTRACT

Most animals move in dense habitats where distant landmarks are limited, but how they find their way around remains poorly understood. Poison frogs inhabit the rainforest understory, where they shuttle tadpoles from small territories to widespread pools. Recent studies revealed their excellent spatial memory and the ability to home back from several hundred meters. It remains unclear whether this homing ability is restricted to the areas that had been previously explored or whether it allows the frogs to navigate from areas outside their direct experience. Here, we used radio-tracking to study the navigational performance of three-striped poison frog translocated outside the area of their routine movements (200-800 m). Translocated frogs returned to their home territory via a direct path from all distances and with little difference in orientation accuracy, suggesting a flexible map-like navigation mechanism. These findings challenge our current understanding of both the mechanisms and the sensory basis of amphibian orientation.


Subject(s)
Anura/physiology , Movement , Orientation, Spatial , Spatial Memory , Spatial Navigation , Animals , Male , Peru
11.
J Exp Biol ; 220(Pt 21): 3949-3954, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28864563

ABSTRACT

Understanding the external stimuli and natural contexts that elicit complex behaviours, such as parental care, is key in linking behavioural mechanisms to their real-life function. Poison frogs provide obligate parental care by shuttling their tadpoles from terrestrial clutches to aquatic nurseries, but little is known about the proximate mechanisms that control these behaviours. In this study, we used Allobates femoralis, a poison frog with predominantly male parental care, to investigate whether tadpole transport can be induced in both sexes by transferring unrelated tadpoles to the backs of adults in the field. Specifically, we asked whether the presence of tadpoles on an adult's back can override the decision-making rules preceding tadpole pick-up and induce the recall of spatial memory necessary for finding tadpole deposition sites. We used telemetry to facilitate accurate tracking of individual frogs and spatial analysis to compare movement trajectories. All tested individuals transported their foster-tadpoles to water pools outside their home area. Contrary to our expectation, we found no sex difference in the likelihood to transport or in the spatial accuracy of finding tadpole deposition sites. We reveal that a stereotypical cascade of parental behaviours that naturally involves sex-specific offspring recognition strategies and the use of spatial memory can be manipulated by experimental placement of unrelated tadpoles on adult frogs. As individuals remained inside their home area when only the jelly from tadpole-containing clutches was brushed on the back, we speculate that tactile rather than chemical stimuli trigger these parental behaviours.


Subject(s)
Anura/physiology , Maternal Behavior , Paternal Behavior , Animals , Decision Making , Larva , Sex Factors , Spatial Memory
12.
PeerJ ; 5: e3745, 2017.
Article in English | MEDLINE | ID: mdl-28875083

ABSTRACT

Animals relying on uncertain, ephemeral and patchy resources have to regularly update their information about profitable sites. For many tropical amphibians, widespread, scattered breeding pools constitute such fluctuating resources. Among tropical amphibians, poison frogs (Dendrobatidae) exhibit some of the most complex spatial and parental behaviors-including territoriality and tadpole transport from terrestrial clutches to ephemeral aquatic deposition sites. Recent studies have revealed that poison frogs rely on spatial memory to successfully navigate through their environment. This raises the question of when and how these frogs gain information about the area and suitable reproductive resources. To investigate the spatial patterns of pool use and to reveal potential explorative behavior, we used telemetry to follow males of the territorial dendrobatid frog Allobates femoralis during tadpole transport and subsequent homing. To elicit exploration, we reduced resource availability experimentally by simulating desiccated deposition sites. We found that tadpole transport is strongly directed towards known deposition sites and that frogs take similar direct paths when returning to their home territory. Frogs move faster during tadpole transport than when homing after the deposition, which probably reflects different risks and costs during these two movement phases. We found no evidence for exploration, neither during transport nor homing, and independent of the availability of deposition sites. We suggest that prospecting during tadpole transport is too risky for the transported offspring as well as for the transporting male. Relying on spatial memory of multiple previously discovered pools appears to be the predominant and successful strategy for the exploitation of reproductive resources in A. femoralis. Our study provides for the first time a detailed description of poison frog movement patterns during tadpole transport and corroborates recent findings on the significance of spatial memory in poison frogs. When these frogs explore and discover new reproductive resources remains unknown.

13.
Proc Biol Sci ; 284(1859)2017 Jul 26.
Article in English | MEDLINE | ID: mdl-28747478

ABSTRACT

Writing over a century ago, Darwin hypothesized that vocal expression of emotion dates back to our earliest terrestrial ancestors. If this hypothesis is true, we should expect to find cross-species acoustic universals in emotional vocalizations. Studies suggest that acoustic attributes of aroused vocalizations are shared across many mammalian species, and that humans can use these attributes to infer emotional content. But do these acoustic attributes extend to non-mammalian vertebrates? In this study, we asked human participants to judge the emotional content of vocalizations of nine vertebrate species representing three different biological classes-Amphibia, Reptilia (non-aves and aves) and Mammalia. We found that humans are able to identify higher levels of arousal in vocalizations across all species. This result was consistent across different language groups (English, German and Mandarin native speakers), suggesting that this ability is biologically rooted in humans. Our findings indicate that humans use multiple acoustic parameters to infer relative arousal in vocalizations for each species, but mainly rely on fundamental frequency and spectral centre of gravity to identify higher arousal vocalizations across species. These results suggest that fundamental mechanisms of vocal emotional expression are shared among vertebrates and could represent a homologous signalling system.


Subject(s)
Arousal , Emotions , Vocalization, Animal , Acoustics , Animals , Humans , Language , Vertebrates
14.
Behav Processes ; 126: 71-5, 2016 May.
Article in English | MEDLINE | ID: mdl-26997105

ABSTRACT

Detour behaviour, an individual's ability to reach its goal by taking an indirect route, has been used to test spatial cognitive abilities across a variety of taxa. Although many amphibians show a strong homing ability, there is currently little evidence of amphibian spatial cognitive flexibility. We tested whether a territorial frog, Allobates femoralis, can flexibly adjust its homing path when faced with an obstacle. We displaced male frogs from their calling sites into the centre of circular arenas and recorded their escape routes. In the first experiment we provided an arena with equally high walls. In the second experiment we doubled the height of the homeward facing wall. Finally, we provided a tube as a shortcut through the high wall. In the equal-height arena, most frogs chose to escape via the quadrant facing their former calling site. However, when challenged with different heights, nearly all frogs chose the low wall, directing their movements away from the calling site. In the "escape tunnel" experiment most frogs still chose the low wall. Our results show that displaced A. femoralis males can flexibly adjust their homing path and avoid (presumably energetically costly) obstacles, providing experimental evidence of spatial cognitive flexibility in an amphibian.


Subject(s)
Spatial Navigation/physiology , Animals , Behavior, Animal , Male , Ranidae , Territoriality
15.
Anim Behav ; 114: 173-179, 2016 04.
Article in English | MEDLINE | ID: mdl-28239184

ABSTRACT

The ability to differentiate between one's own and foreign offspring ensures the exclusive allocation of costly parental care to only related progeny. The selective pressure to evolve offspring discrimination strategies is largely shaped by the likelihood and costs of offspring confusion. We hypothesize that males and females with different reproductive and spatial behaviours face different risks of confusing their own with others' offspring, and this should favour differential offspring discrimination strategies in the two sexes. In the brilliant-thighed poison frog, Allobates femoralis, males and females are highly polygamous, terrestrial clutches are laid in male territories and females abandon the clutch after oviposition. We investigated whether males and females differentiate between their own offspring and unrelated young, whether they use direct or indirect cues and whether the concurrent presence of their own clutch is essential to elicit parental behaviours. Males transported tadpoles regardless of location or parentage, but to a lesser extent in the absence of their own clutch. Females discriminated between clutches based on exact location and transported tadpoles only in the presence of their own clutch. This sex-specific selectivity of males and females during parental care reflects the differences in their respective costs of offspring confusion, resulting from differences in their spatial and reproductive behaviours.

16.
Anim Behav ; 116: 89-98, 2016 06.
Article in English | MEDLINE | ID: mdl-28239185

ABSTRACT

The ability to associate environmental cues with valuable resources strongly increases the chances of finding them again, and thus memory often guides animal movement. For example, many temperate region amphibians show strong breeding site fidelity and will return to the same areas even after the ponds have been destroyed. In contrast, many tropical amphibians depend on exploitation of small, scattered and fluctuating resources such as ephemeral pools for reproduction. It remains unknown whether tropical amphibians rely on spatial memory for effective exploitation of their reproductive resources. Poison frogs (Dendrobatidae) routinely shuttle their tadpoles from terrestrial clutches to dispersed aquatic deposition sites. We investigated the role of spatial memory for relocating previously discovered deposition sites in an experimental population of the brilliant-thighed poison frog, Allobates femoralis, a species with predominantly male tadpole transport. We temporarily removed an array of artificial pools that served as the principal tadpole deposition resource for the population. In parallel, we set up an array of sham sites and sites containing conspecific tadpole odour cues. We then quantified the movement patterns and site preferences of tadpole-transporting males by intensive sampling of the area and tracking individual frogs. We found that tadpole-carrier movements were concentrated around the exact locations of removed pools and most individuals visited several removed pool sites. In addition, we found that tadpole-transporting frogs were attracted to novel sites that contained high concentrations of conspecific olfactory tadpole cues. Our results suggest that A. femoralis males rely heavily on spatial memory for efficient exploitation of multiple, widely dispersed deposition sites once they are discovered. Additionally, olfactory cues may facilitate the initial discovery of the new sites.

17.
Behav Ecol ; 26(4): 1219-1225, 2015.
Article in English | MEDLINE | ID: mdl-26167099

ABSTRACT

Parental care systems are shaped by costs and benefits to each sex of investing into current versus future progeny. Flexible compensatory parental care is mainly known in biparental species, particularly where parental desertion or reduction of care by 1 parent is common. The other parent can then compensate this loss by either switching parental roles and/or by increasing its own parental effort. In uniparental species, desertion of the caregiver usually leads to total brood loss. In the poison frog, Allobates femoralis, obligatory tadpole transport (TT) is generally performed by males, whereas females abandon their clutches after oviposition. Nevertheless, in a natural population we previously observed 7.8% of TT performed by females, which we could link to the absence of the respective fathers. In the following experiment, under laboratory conditions, all tested A. femoralis females flexibly took over parental duties, but only when their mates were removed. Our findings provide clear evidence for compensatory flexibility in a species with unisexual parental care. Contrary to the view of amphibian parental care as being stereotypical and fixed, these results demonstrate behavioral flexibility as an adaptive response to environmental and social uncertainty. Behavioral flexibility might actually represent a crucial step in the evolutionary transition from uniparental to biparental care in poison frogs. We suspect that across animal species flexible parental roles are much more common than previously thought and suggest the idea of a 3-dimensional continuum regarding flexibility, parental involvement, and timing, when thinking about the evolution of parental care.

18.
Biol Lett ; 10(11): 20140642, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25411379

ABSTRACT

Among vertebrates, comparable spatial learning abilities have been found in birds, mammals, turtles and fishes, but virtually nothing is known about such abilities in amphibians. Overall, amphibians are the most sedentary vertebrates, but poison frogs (Dendrobatidae) routinely shuttle tadpoles from terrestrial territories to dispersed aquatic deposition sites. We hypothesize that dendrobatid frogs rely on learning for flexible navigation. We tested the role of experience with the local cues for poison frog way-finding by (i) experimentally displacing territorial males of Allobates femoralis over several hundred metres, (ii) using a harmonic direction finder with miniature transponders to track these small frogs, and (iii) using a natural river barrier to separate the translocated frogs from any familiar landmarks. We found that homeward orientation was disrupted by the translocation to the unfamiliar area but frogs translocated over similar distances in their local area showed significant homeward orientation and returned to their territories via a direct path. We suggest that poison frogs rely on spatial learning for way-finding in their local area.


Subject(s)
Anura/physiology , Cues , Orientation , Spatial Navigation , Animals , French Guiana , Male , Rainforest
19.
Nat Commun ; 5: 3679, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24755739

ABSTRACT

A core feature of social intelligence is the understanding of third-party relations, which has been experimentally demonstrated in primates. Whether other social animals also have this capacity, and whether they can use this capacity flexibly to, for example, also assess the relations of neighbouring conspecifics, remains unknown. Here we show that ravens react differently to playbacks of dominance interactions that either confirm or violate the current rank hierarchy of members in their own social group and of ravens in a neighbouring group. Therefore, ravens understand third-party relations and may deduce those not only via physical interactions but also by observation.


Subject(s)
Behavior, Animal/physiology , Crows/physiology , Emotional Intelligence/physiology , Recognition, Psychology/physiology , Social Dominance , Acoustic Stimulation , Animals , Female , Linear Models , Male
20.
Front Zool ; 11(1): 29, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24666825

ABSTRACT

INTRODUCTION: The ability to relocate home or breeding sites after experimental removal has been observed in several amphibians and the sensory basis of this behavior has been studied in some temperate-region species. However, the actual return trajectories have rarely been quantified in these studies and it remains unknown how different cues guide the homing behavior. Dendrobatidae (dart-poison frogs) exhibit some of the most complex spatial behaviors among amphibians, such as territoriality and tadpole transport. Recent data showed that Allobates femoralis, a frog with paternal tadpole transport, successfully returns to the home territories after experimental translocations of up to 400 m. In the present study, we used harmonic direction finding to obtain homing trajectories. Additionally, we quantified the initial orientation of individuals, translocated 10 m to 105 m, in an arena assay. RESULTS: Tracking experiments revealed that homing trajectories are characterized by long periods of immobility (up to several days) and short periods (several hours) of rapid movement, closely fitting a straight line towards the home territory. In the arena assay, the frogs showed significant homeward orientation for translocation distances of 35 m to 70 m but not for longer and shorter distances. CONCLUSIONS: Our results describe a very accurate homing behavior in male A. femoralis. The straightness of trajectories and initial homeward orientation suggest integration of learned landmarks providing a map position for translocated individuals. Future research should focus on the role of learning in homing behavior and the exact nature of cues being used.

SELECTION OF CITATIONS
SEARCH DETAIL