Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Radiology ; 311(2): e232521, 2024 May.
Article in English | MEDLINE | ID: mdl-38742969

ABSTRACT

Background Cerebellar mutism syndrome (CMS), a complication following medulloblastoma surgery, has been linked to dentato-thalamo-cortical tract (DTCT) injury; the association of the degree of DTCT injury with severity of CMS-related symptoms has not been investigated. Purpose To investigate the association between severity of CMS-related symptoms and degree and patterns of DTCT injury with use of diffusion tensor imaging (DTI), and if laterality of injury influences neurologic symptoms. Materials and Methods This retrospective case-control study used prospectively collected clinical and DTI data on patients with medulloblastoma enrolled in a clinical trial (between July 2016 and February 2020) and healthy controls (between April and November 2017), matched with the age range of the participants with medulloblastoma. CMS was divided into types 1 (CMS1) and 2 (CMS2). Multivariable logistic regression was used to investigate the relationship between CMS likelihood and DTCT injury. Results Overall, 82 participants with medulloblastoma (mean age, 11.0 years ± 5.2 [SD]; 53 male) and 35 healthy controls (mean age, 18.0 years ± 3.06; 18 female) were included. In participants with medulloblastoma, DTCT was absent bilaterally (AB), absent on the right side (AR), absent on the left side (AL), or present bilaterally (PB), while it was PB in all healthy controls. Odds of having CMS were associated with higher degree of DTCT damage (AB, odds ratio = 272.7 [95% CI: 269.68, 275.75; P < .001]; AR, odds ratio = 14.40 [95% CI: 2.84, 101.48; P < .001]; and AL, odds ratio = 8.55 [95% CI: 1.15, 74.14; P < .001). Left (coefficient = -0.07, χ2 = 12.4, P < .001) and right (coefficient = -0.15, χ2 = 33.82, P < .001) DTCT volumes were negatively associated with the odds of CMS. More participants with medulloblastoma with AB showed CMS1; unilateral DTCT absence prevailed in CMS2. Lower DTCT volumes correlated with more severe ataxia. Unilateral DTCT injury caused ipsilateral dysmetria; AB caused symmetric dysmetria. PB indicated better neurologic outcome. Conclusion The severity of CMS-associated mutism, ataxia, and dysmetria was associated with DTCT damage severity. DTCT damage patterns differed between CMS1 and CMS2. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Dorigatti Soldatelli and Ertl-Wagner in this issue.


Subject(s)
Cerebellar Neoplasms , Diffusion Tensor Imaging , Medulloblastoma , Mutism , Postoperative Complications , Humans , Medulloblastoma/surgery , Medulloblastoma/diagnostic imaging , Male , Female , Mutism/etiology , Mutism/diagnostic imaging , Diffusion Tensor Imaging/methods , Retrospective Studies , Child , Case-Control Studies , Adolescent , Cerebellar Neoplasms/diagnostic imaging , Cerebellar Neoplasms/surgery , Postoperative Complications/diagnostic imaging , Neural Pathways/diagnostic imaging , Thalamus/diagnostic imaging
2.
Neurooncol Adv ; 5(1): vdad006, 2023.
Article in English | MEDLINE | ID: mdl-36926247

ABSTRACT

Background: Surgical resection is the gold standard in the treatment of pediatric posterior fossa tumors. However, surgical damage is often unavoidable and its association with postoperative complications is not well understood. A reliable localization and measure of cerebellar damage is fundamental to study the relationship between the damaged cerebellar regions and postoperative neurological outcomes. Existing cerebellum normalization methods are likely to fail on postoperative scans, therefore current approaches to measure postoperative damage rely on manual labelling. In this work, we develop a robust algorithm to automatically detect and measure cerebellum damage in postoperative 3D T1 magnetic resonance imaging (MRI). Methods: In our approach, normal brain tissues are first segmented using a Bayesian algorithm customized for postoperative scans. Next, the cerebellum is isolated by nonlinear registration of a whole-brain template to the native space. The isolated cerebellum is then normalized into the spatially unbiased atlas (SUIT) space using anatomical information derived from the previous step. Finally, the damage is detected in the atlas space by comparing the normalized cerebellum and the SUIT template. Results: We evaluated our damage detection tool on postoperative scans of 153 patients with medulloblastoma based on inspection by human experts. We also designed a simulation to evaluate performance without human intervention and with an explicitly controlled and defined ground truth. Our results show that the approach performs adequately under various realistic conditions. Conclusions: We develop an accurate, robust, and fully automatic localization and measurement of cerebellar damage in the atlas space using postoperative MRI.

3.
Pediatr Blood Cancer ; 70 Suppl 4: e30147, 2023 06.
Article in English | MEDLINE | ID: mdl-36519599

ABSTRACT

Tumors of the central nervous system are the most common solid malignancies in children and the most common cause of pediatric cancer-related mortality. Imaging plays a central role in diagnosis, staging, treatment planning, and response assessment of pediatric brain tumors. However, the substantial variability in brain tumor imaging protocols across institutions leads to variability in patient risk stratification and treatment decisions, and complicates comparisons of clinical trial results. This White Paper provides consensus-based imaging recommendations for evaluating pediatric patients with primary brain tumors. The proposed brain magnetic resonance imaging protocol recommendations balance advancements in imaging techniques with the practicality of deployment across most imaging centers.


Subject(s)
Brain Neoplasms , Surface Plasmon Resonance , Humans , Child , Brain Neoplasms/pathology , Magnetic Resonance Imaging/methods , Central Nervous System/pathology , Brain/pathology
4.
Pediatr Blood Cancer ; 70 Suppl 4: e30165, 2023 06.
Article in English | MEDLINE | ID: mdl-36565281

ABSTRACT

A standardized imaging protocol for pediatric oncology patients is essential for accurate and efficient imaging, while simultaneously promoting collaborative understanding of pathologies and radiologic assessment of treatment response. The objective of this article is to provide standardized pediatric imaging guidelines and parameters for evaluation of tumors of the pediatric orbit, calvarium, skull base, and temporal bone. This article was drafted based on current scientific literature as well as consensus opinions of imaging experts in collaboration with the Children's Oncology Group Diagnostic Imaging Committee, Society of Pediatric Radiology Oncology Committee, and American Society of Pediatric Neuroradiology.


Subject(s)
Skull Base Neoplasms , Humans , Child , Skull Base Neoplasms/diagnostic imaging , Surface Plasmon Resonance , Medical Oncology , Skull , Diagnostic Imaging
5.
Pediatr Blood Cancer ; 70 Suppl 4: e30150, 2023 06.
Article in English | MEDLINE | ID: mdl-36562555

ABSTRACT

Childhood spinal tumors are rare. Tumors can involve the spinal cord, the meninges, bony spine, and the paraspinal tissue. Optimized imaging should be utilized to evaluate tumors arising from specific spinal compartments. This paper provides consensus-based recommendations for optimized imaging of tumors arising from specific spinal compartments at diagnosis, follow-up during and after therapy, and response assessment.


Subject(s)
Spinal Cord Neoplasms , Surface Plasmon Resonance , Child , Humans , Spine , Spinal Cord Neoplasms/diagnostic imaging , Spinal Cord , Magnetic Resonance Imaging
6.
Neuro Oncol ; 25(2): 375-385, 2023 02 14.
Article in English | MEDLINE | ID: mdl-35789275

ABSTRACT

BACKGROUND: Pediatric postoperative cerebellar mutism syndrome (CMS) is a rare but well-known complication of medulloblastoma (Mb) resection with devastating effects on expressive language, mobility, cognition, and emotional regulation that diminishes quality of life for many Mb survivors. The specific anatomical and neuronal basis of CMS remains obscure. We address this issue by identifying patterns of surgical damage and secondary axonal degeneration in Mb survivors with CMS. METHODS: Children with Mb deemed high risk for CMS based on intraventricular location of the tumor had T1 images analyzed for location(s) of surgical damage using a specially developed algorithm. We used three complementary methods of spatial analysis to identify surgical damage linked to CMS diagnosis. Magnetization transfer ratio (MTR) images were analyzed for evidence of demyelination in anatomic regions downstream of the cerebellum, indicating neuronal dysfunction. RESULTS: Spatial analyses highlighted damage to the fastigial nuclei and their associated cerebellar cortices as the strongest predictors of CMS. CMS-related MTR decrease was greatest in the ventral periaqueductal gray (PAG) area and highly consistent in the left red nucleus. CONCLUSION: Our evidence points to disruption of output from the fastigial nuclei as a likely causal trigger for CMS. We propose that core CMS symptoms result from a disruption in the triggering of survival behaviors regulated by the PAG, including the gating of vocalization and volitional movement. The fastigial nuclei provide the densest output to the PAG from the cerebellum, thus sparing these structures may provide a greater likelihood of CMS prevention.


Subject(s)
Cerebellar Diseases , Cerebellar Neoplasms , Medulloblastoma , Mutism , Child , Humans , Periaqueductal Gray/pathology , Mutism/etiology , Quality of Life , Postoperative Complications , Cerebellar Diseases/complications , Cerebellar Diseases/diagnosis , Medulloblastoma/pathology , Cerebellar Neoplasms/surgery , Cerebellar Neoplasms/complications
7.
Neuro Oncol ; 25(2): 386-397, 2023 02 14.
Article in English | MEDLINE | ID: mdl-35652336

ABSTRACT

BACKGROUND: Recurrent atypical teratoid/rhabdoid tumor (AT/RT) is, most often, a fatal pediatric malignancy with limited curative options. METHODS: We conducted a phase II study of Aurora kinase A inhibitor alisertib in patients aged <22 years with recurrent AT/RT. Patients received alisertib once daily (80 mg/m2 as enteric-coated tablets or 60 mg/m2 as liquid formulation) on Days 1-7 of a 21-day cycle until progressive disease (PD) occurred. Alisertib plasma concentrations were measured in cycle 1 on Days 1 (single dose) and 7 (steady state) and analyzed with noncompartmental pharmacokinetics. Trial efficacy end point was ≥10 participants with stable disease (SD) or better at 12 weeks. RESULTS: SD (n = 8) and partial response (PR) (n = 1) were observed among 30 evaluable patients. Progression-free survival (PFS) was 30.0% ± 7.9% at 6 months and 13.3% ± 5.6% at 1 year. One-year overall survival (OS) was 36.7% ± 8.4%. Two patients continued treatment for >12 months. PFS did not differ by AT/RT molecular groups. Neutropenia was the most common adverse effect (n = 23/30, 77%). The 22 patients who received liquid formulation had a higher mean maximum concentration (Cmax) of 10.1 ± 3.0 µM and faster time to Cmax (Tmax = 1.2 ± 0.7 h) than those who received tablets (Cmax = 5.7 ± 2.4 µM, Tmax = 3.4 ± 1.4 h). CONCLUSIONS: Although the study did not meet predetermined efficacy end point, single-agent alisertib was well tolerated by children with recurrent AT/RT, and SD or PR was observed in approximately a third of the patients.


Subject(s)
Antineoplastic Agents , Central Nervous System Neoplasms , Rhabdoid Tumor , Child , Humans , Antineoplastic Agents/therapeutic use , Rhabdoid Tumor/drug therapy , Azepines/therapeutic use , Pyrimidines/therapeutic use , Central Nervous System Neoplasms/drug therapy , Aurora Kinase A , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/adverse effects
8.
Nature ; 609(7929): 1012-1020, 2022 09.
Article in English | MEDLINE | ID: mdl-36131015

ABSTRACT

Medulloblastoma, a malignant childhood cerebellar tumour, segregates molecularly into biologically distinct subgroups, suggesting that a personalized approach to therapy would be beneficial1. Mouse modelling and cross-species genomics have provided increasing evidence of discrete, subgroup-specific developmental origins2. However, the anatomical and cellular complexity of developing human tissues3-particularly within the rhombic lip germinal zone, which produces all glutamatergic neuronal lineages before internalization into the cerebellar nodulus-makes it difficult to validate previous inferences that were derived from studies in mice. Here we use multi-omics to resolve the origins of medulloblastoma subgroups in the developing human cerebellum. Molecular signatures encoded within a human rhombic-lip-derived lineage trajectory aligned with photoreceptor and unipolar brush cell expression profiles that are maintained in group 3 and group 4 medulloblastoma, suggesting a convergent basis. A systematic diagnostic-imaging review of a prospective institutional cohort localized the putative anatomical origins of group 3 and group 4 tumours to the nodulus. Our results connect the molecular and phenotypic features of clinically challenging medulloblastoma subgroups to their unified beginnings in the rhombic lip in the early stages of human development.


Subject(s)
Cell Lineage , Cerebellar Neoplasms , Medulloblastoma , Metencephalon , Animals , Cerebellar Neoplasms/classification , Cerebellar Neoplasms/embryology , Cerebellar Neoplasms/pathology , Cerebellum/embryology , Humans , Medulloblastoma/classification , Medulloblastoma/embryology , Medulloblastoma/pathology , Metencephalon/embryology , Mice , Neurons/pathology , Prospective Studies
9.
Neuroradiology ; 64(7): 1447-1456, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35344053

ABSTRACT

PURPOSE: Accurate detection of leptomeningeal metastasis (LM) is critical for risk stratification and treatment of pediatric brain tumors. Poor-quality staging MRI has been associated with decreased survival in this population, but technical factors differentiating good from poor quality screening MRIs remain undefined. To test the hypothesis that key technical factors are associated with accurate MRI diagnosis of leptomeningeal metastasis in children with leptomeningeal seeding brain tumors. METHODS: MRIs acquired at outside facilities and repeated in our institution within 35 days for 75 children with leptomeningeal seeding tumors were assessed for slice thickness and gap; use of T2 FLAIR + Contrast, acquisition plane of 3DT1WI + Contrast (brain); axial T1 + Contrast sequence, and use of pre-contrast T1 images (spine). Reported findings were recorded as positive, negative, or equivocal for LM and classified as true positive (TP; unequivocal metastasis), false negative (FN; not reported), false positive (FP; resolved without treatment), or true negative. Wilcoxon signed-rank and Fisher's exact test were used to assess technical differences between TP and FN MRIs. RESULTS: Rate of LM detection was greater with smaller interslice gap in brain (P = 0.003) and spine (P = 0.002); use of T2 FLAIR + Contrast (P = 0.005) and sagittal plane for 3DT1WI + Contrast (P = 0.028) in brain; and use of alternatives to axial TSE/FSE in spine (P = 0.048). Slice thickness was not significant. Pre-contrast T1WI did not contribute to LM diagnosis in spine. CONCLUSION: Using post-contrast T2 FLAIR and sagittal 3DT1 in brain, small/no interslice gap, and avoiding TSE/FSE axials in spine may facilitate leptomeningeal metastasis detection in children with brain tumors.


Subject(s)
Brain Neoplasms , Meningeal Carcinomatosis , Brain , Brain Neoplasms/diagnostic imaging , Child , Humans , Magnetic Resonance Imaging/methods , Meninges
10.
J Transl Med ; 20(1): 103, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35197056

ABSTRACT

BACKGROUND: Pantothenate kinase (PANK) is the first and rate-controlling enzymatic step in the only pathway for cellular coenzyme A (CoA) biosynthesis. PANK-associated neurodegeneration (PKAN), formerly known as Hallervorden-Spatz disease, is a rare, life-threatening neurologic disorder that affects the CNS and arises from mutations in the human PANK2 gene. Pantazines, a class of small molecules containing the pantazine moiety, yield promising therapeutic effects in an animal model of brain CoA deficiency. A reliable technique to identify the neurometabolic effects of PANK dysfunction and to monitor therapeutic responses is needed. METHODS: We applied 1H magnetic resonance spectroscopy as a noninvasive technique to evaluate the therapeutic effects of the newly developed Pantazine BBP-671. RESULTS: 1H MRS reliably quantified changes in cerebral metabolites, including glutamate/glutamine, lactate, and N-acetyl aspartate in a neuronal Pank1 and Pank2 double-knockout (SynCre+ Pank1,2 dKO) mouse model of brain CoA deficiency. The neuronal SynCre+ Pank1,2 dKO mice had distinct decreases in Glx/tCr, NAA/tCr, and lactate/tCr ratios compared to the wildtype matched control mice that increased in response to BBP-671 treatment. CONCLUSIONS: BBP-671 treatment completely restored glutamate/glutamine levels in the brains of the mouse model, suggesting that these metabolites are promising clinically translatable biomarkers for future therapeutic trials.


Subject(s)
Coenzyme A , Pantothenate Kinase-Associated Neurodegeneration , Animals , Brain/pathology , Coenzyme A/metabolism , Disease Models, Animal , Mice , Pantothenate Kinase-Associated Neurodegeneration/genetics , Pantothenate Kinase-Associated Neurodegeneration/pathology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Proton Magnetic Resonance Spectroscopy
11.
J Clin Oncol ; 40(1): 83-95, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34714708

ABSTRACT

PURPOSE: To characterize the association between neurocognitive outcomes (memory and processing speed) and radiation (RT) dose to the hippocampus, corpus callosum (CC), and frontal white matter (WM) in children with medulloblastoma treated on a prospective study, SJMB03. PATIENTS AND METHODS: Patients age 3-21 years with medulloblastoma were treated at a single institution on a phase III study. The craniospinal RT dose was 23.4 Gy for average-risk patients and 36-39.6 Gy for high-risk patients. The boost dose was 55.8 Gy to the tumor bed. Patients underwent cognitive testing at baseline and once yearly for 5 years. Performance on tests of memory (associative memory and working memory) and processing speed (composite processing speed and perceptual speed) was analyzed. Mixed-effects models were used to estimate longitudinal trends in neurocognitive outcomes. Reliable change index and logistic regression were used to define clinically meaningful neurocognitive decline and identify variables associated with decline. RESULTS: One hundred and twenty-four patients were eligible for inclusion, with a median neurocognitive follow-up of 5 years. Mean right and left hippocampal doses were significantly associated with decline in associative memory in patients without posterior fossa syndrome (all P < .05). Mean CC and frontal WM doses were significantly associated with decline in both measures of processing speed (all P < .05). Median brain substructure dose-volume histograms were shifted to the right for patients with a decline in associative memory or processing speed. The odds of decline in associative memory and composite processing speed increased by 23%-26% and by 10%-15% for every 1-Gy increase in mean hippocampal dose and mean CC or frontal WM dose, respectively. CONCLUSION: Increasing RT dose to the CC or frontal WM and hippocampus is associated with worse performance on tests of processing speed and associative memory, respectively. Brain substructure-informed RT planning may mitigate neurocognitive impairment.


Subject(s)
Brain/radiation effects , Cerebellar Neoplasms/radiotherapy , Cognition/radiation effects , Cranial Irradiation , Dose Fractionation, Radiation , Medulloblastoma/radiotherapy , Radiation Dosage , Adolescent , Adolescent Behavior/radiation effects , Adolescent Development/radiation effects , Age Factors , Brain/diagnostic imaging , Brain/growth & development , Cerebellar Neoplasms/diagnostic imaging , Cerebellar Neoplasms/physiopathology , Child , Child Behavior/radiation effects , Child Development/radiation effects , Child, Preschool , Clinical Trials, Phase III as Topic , Cranial Irradiation/adverse effects , Female , Humans , Male , Medulloblastoma/diagnostic imaging , Medulloblastoma/physiopathology , Memory/radiation effects , Neuropsychological Tests , Radiotherapy Planning, Computer-Assisted , Retrospective Studies , Time Factors , Treatment Outcome , Young Adult
12.
Neuro Oncol ; 23(9): 1586-1596, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33823018

ABSTRACT

BACKGROUND: Posterior fossa syndrome (PFS) is a known consequence of medulloblastoma resection. Our aim was to clinically define PFS, its evolution over time, and ascertain risk factors for its development and poor recovery. METHODS: Children with medulloblastoma treated at St Jude Children's Research Hospital from 6/2013 to 7/2019 received standardized neurological examinations, before and periodically after radiation therapy. Most (98.3%) were enrolled on the ongoing multi-institutional protocol (SJMB12; NCT01878617). RESULTS: Sixty (34%) of 178 evaluated children had PFS. Forty (23%) had complete mutism (PFS1) and 20 (11%) had diminished speech (PFS2). All children with PFS had severe ataxia and 42.5% of PFS1 had movement disorders. By multivariable analysis, younger age (P = .0005) and surgery in a low-volume surgery center (P = .0146) increased PFS risk, while Sonic Hedgehog tumors had reduced risk (P = .0025). Speech and gait returned in PFS1/PFS2 children at a median of 2.3/0.7 and 2.1/1.5 months, respectively, however, 12 (44.4%) of 27 PFS1 children with 12 months of follow-up were nonambulatory at 1 year. Movement disorder (P = .037) and high ataxia score (P < .0001) were associated with delayed speech recovery. Older age (P = .0147) and high ataxia score (P < .0001) were associated with delayed gait return. Symptoms improved in all children but no child with PFS had normal neurologic examination at a median of 23 months after surgery. CONCLUSIONS: Categorizing PFS into types 1 and 2 has prognostic relevance. Almost half of the children with PFS1 with 12-month follow-up were nonambulatory. Surgical experience was a major modifiable contributor to the development of PFS.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Mutism , Aged , Cerebellar Neoplasms/surgery , Child , Hedgehog Proteins , Humans , Medulloblastoma/surgery , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Postoperative Period , Prospective Studies , Risk Factors
13.
Clin Cancer Res ; 27(10): 2879-2889, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33737307

ABSTRACT

PURPOSE: Report relevance of molecular groups to clinicopathologic features, germline SMARCB1/SMARCA4 alterations (GLA), and survival of children with atypical teratoid rhabdoid tumor (ATRT) treated in two multi-institutional clinical trials. MATERIALS AND METHODS: Seventy-four participants with newly diagnosed ATRT were treated in two trials: infants (SJYC07: age < 3 years; n = 52) and children (SJMB03: age 3-21 years; n = 22), using surgery, conventional chemotherapy (infants), or dose-dense chemotherapy with autologous stem cell rescue (children), and age- and risk-adapted radiotherapy [focal (infants) and craniospinal (CSI; children)]. Molecular groups ATRT-MYC (MYC), ATRT-SHH (SHH), and ATRT-TYR (TYR) were determined from tumor DNA methylation profiles. RESULTS: Twenty-four participants (32%) were alive at time of analysis at a median follow-up of 8.4 years (range, 3.1-14.1 years). Methylation profiling classified 64 ATRTs as TYR (n = 21), SHH (n = 30), and MYC (n = 13), SHH group being associated with metastatic disease. Among infants, TYR group had the best overall survival (OS; P = 0.02). However, outcomes did not differ by molecular groups among infants with nonmetastatic (M0) disease. Children with M0 disease and <1.5 cm2 residual tumor had a 5-year progression-free survival (PFS) of 72.7 ± 12.7% and OS of 81.8 ± 11%. Infants with M0 disease had a 5-year PFS of 39.1 ± 11.5% and OS of 51.8 ± 12%. Those with metastases fared poorly [5-year OS 25 ± 12.5% (children) and 0% (infants)]. SMARCB1 GLAs were not associated with PFS. CONCLUSIONS: Among infants, those with ATRT-TYR had the best OS. ATRT-SHH was associated with metastases and consequently with inferior outcomes. Children with nonmetastatic ATRT benefit from postoperative CSI and adjuvant chemotherapy.


Subject(s)
Biomarkers, Tumor , Rhabdoid Tumor/diagnosis , Rhabdoid Tumor/etiology , Teratoma/diagnosis , Teratoma/etiology , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Child , Child, Preschool , DNA Copy Number Variations , DNA Methylation , Diagnosis, Differential , Disease Management , Disease Susceptibility , Female , Germ-Line Mutation , Humans , Infant , Male , Mutation , Prognosis , Rhabdoid Tumor/mortality , Rhabdoid Tumor/therapy , SMARCB1 Protein/genetics , Teratoma/mortality , Teratoma/therapy , Treatment Outcome
14.
Neuroradiology ; 63(8): 1185-1213, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33779771

ABSTRACT

PURPOSE: In addition to histology, genetic alteration is now required to classify many central nervous system (CNS) tumors according to the most recent World Health Organization CNS tumor classification scheme. Although that is still not the case for classifying pediatric low-grade neuroepithelial tumors (PLGNTs), genetic and molecular features are increasingly being used for making treatment decisions. This approach has become a standard clinical practice in many specialized pediatric cancer centers and will likely be more widely practiced in the near future. This paradigm shift in the management of PLGNTs necessitates better understanding of how genetic alterations influence histology and imaging characteristics of individual PLGNT phenotypes. METHODS: The complex association of genetic alterations with histology, clinical, and imaging of each phenotype of the extremely heterogeneous PLGNT family has been addressed in a holistic approach in this up-to-date review article. A new imaging stratification scheme has been proposed based on tumor morphology, location, histology, and genetics. Imaging characteristics of each PLGNT entity are also depicted in light of histology and genetics. CONCLUSION: This article reviews the association of specific genetic alteration with location, histology, imaging, and prognosis of a specific tumor of the PLGNT family and how that information can be used for better imaging of these tumors.


Subject(s)
Brain Neoplasms , Central Nervous System Neoplasms , Glioma , Neoplasms, Neuroepithelial , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Child , Humans , Mutation , Neoplasms, Neuroepithelial/diagnostic imaging , Neoplasms, Neuroepithelial/genetics , Prognosis
15.
Neuro Oncol ; 23(10): 1777-1788, 2021 10 01.
Article in English | MEDLINE | ID: mdl-33631016

ABSTRACT

BACKGROUND: Pediatric low-grade gliomas (pLGGs) are the most common childhood brain tumor. Progression-free survival (PFS) is much lower than overall survival, emphasizing the need for alternative treatments. Sporadic (without neurofibromatosis type 1) optic pathway and hypothalamic gliomas (OPHGs) are often multiply recurrent and cause significant visual deficits. Recently, there has been a prioritization of functional outcomes. METHODS: We present results from children with recurrent/progressive OPHGs treated on a PBTC (Pediatric Brain Tumor Consortium) phase II trial evaluating efficacy of selumetinib (AZD6244, ARRY-142886) a MEK-1/2 inhibitor. Stratum 4 of PBTC-029 included patients with sporadic recurrent/progressive OPHGs treated with selumetinib at the recommended phase II dose (25mg/m2/dose BID) for a maximum of 26 courses. RESULTS: Twenty-five eligible and evaluable patients were enrolled with a median of 4 (1-11) previous therapies. Six of 25 (24%) had partial response, 14/25 (56%) had stable disease, and 5 (20%) had progressive disease while on treatment. The median treatment courses were 26 (2-26); 14/25 patients completed all 26 courses. Two-year PFS was 78 ± 8.5%. Nineteen of 25 patients were evaluable for visual acuity which improved in 4/19 patients (21%), was stable in 13/19 (68%), and worsened in 2/19 (11%). Five of 19 patients (26%) had improved visual fields and 14/19 (74%) were stable. The most common toxicities were grade 1/2 CPK elevation, anemia, diarrhea, headache, nausea/emesis, fatigue, AST and ALT increase, hypoalbuminemia, and rash. CONCLUSIONS: Selumetinib was tolerable and led to responses and prolonged disease stability in children with recurrent/progressive OPHGs based upon radiographic response, PFS, and visual outcomes.


Subject(s)
Brain Neoplasms , Neurofibromatosis 1 , Optic Nerve Glioma , Benzimidazoles , Brain Neoplasms/drug therapy , Child , Humans , Optic Nerve Glioma/drug therapy
16.
Mol Metab ; 49: 101195, 2021 07.
Article in English | MEDLINE | ID: mdl-33609766

ABSTRACT

BACKGROUND: Nicotinamide adenine dinucleotide (NAD+), a critical coenzyme present in every living cell, is involved in a myriad of metabolic processes associated with cellular bioenergetics. For this reason, NAD+ is often studied in the context of aging, cancer, and neurodegenerative and metabolic disorders. SCOPE OF REVIEW: Cellular NAD+ depletion is associated with compromised adaptive cellular stress responses, impaired neuronal plasticity, impaired DNA repair, and cellular senescence. Increasing evidence has shown the efficacy of boosting NAD+ levels using NAD+ precursors in various diseases. This review provides a comprehensive understanding into the role of NAD+ in aging and other pathologies and discusses potential therapeutic targets. MAJOR CONCLUSIONS: An alteration in the NAD+/NADH ratio or the NAD+ pool size can lead to derailment of the biological system and contribute to various neurodegenerative disorders, aging, and tumorigenesis. Due to the varied distribution of NAD+/NADH in different locations within cells, the direct role of impaired NAD+-dependent processes in humans remains unestablished. In this regard, longitudinal studies are needed to quantify NAD+ and its related metabolites. Future research should focus on measuring the fluxes through pathways associated with NAD+ synthesis and degradation.


Subject(s)
Metabolic Networks and Pathways , NAD/metabolism , Signal Transduction , Aging/metabolism , Animals , Energy Metabolism , Humans , Metabolic Diseases/metabolism , Mitochondria/metabolism , Neoplasms/metabolism , Neurodegenerative Diseases/metabolism , Sirtuins
17.
J Pediatr Rehabil Med ; 14(1): 31-36, 2021.
Article in English | MEDLINE | ID: mdl-33386828

ABSTRACT

PURPOSE: To describe clinical data, rehabilitation services, and outcomes of children with handedness switching as their presenting symptom before low-grade glioma (LGG) diagnosis. METHODS: A retrospective chart review was performed for five patients (four female and four white) with LGG and confirmed handedness switching before LGG diagnosis. RESULTS: All children were less than 8 years at diagnosis, and two patients were less than 3 years. All children were initially right-handed and experienced loss of motor function, ranging from weakness to paresis, in their dominant hand. The median time from switching handedness to diagnosis was 1 month (range: 0.75-60 months). Rehabilitation was offered for three patients, and motor function deficits in the initial dominant hand were resolved in two of the total cohort. At long-term follow-up, hand dominance returned to the initial hand in three patients. CONCLUSIONS: Handedness switching should be acknowledged as a potential sign of LGG in children, and early long-term rehabilitation services should be offered for these children.


Subject(s)
Brain Neoplasms , Glioma , Brain Neoplasms/diagnosis , Child , Female , Functional Laterality , Glioma/diagnosis , Humans , Neuronal Plasticity , Retrospective Studies
18.
Neurooncol Adv ; 3(1): vdab179, 2021.
Article in English | MEDLINE | ID: mdl-34993482

ABSTRACT

BACKGROUND: Platelet-derived growth factor receptor (PDGFR) signaling has been directly implicated in pediatric high-grade gliomagenesis. This study evaluated the safety and tolerability of crenolanib, a potent, selective inhibitor of PDGFR-mediated phosphorylation, in pediatric patients with high-grade glioma (HGG). METHODS: We used a rolling-6 design to study the maximum tolerated dose (MTD) of once-daily crenolanib administered during and after focal radiation therapy in children with newly diagnosed diffuse intrinsic pontine glioma (DIPG) (stratum A) or with recurrent/progressive HGG (stratum B). Pharmacokinetics were studied during the first cycle at the first dose and at steady state (day 28). Alterations in PDGFRA were assessed by Sanger or exome sequencing and interphase fluorescence in situ hybridization or single nucleotide polymorphism arrays. RESULTS: Fifty evaluable patients were enrolled in the 2 strata, and an MTD of 170 mg/m2 was established for both. Dose-limiting toxicities were primarily liver enzyme elevations and hematologic count suppression in both strata. Crenolanib AUC0-48h and C MAX did not differ significantly for crushed versus whole-tablet administration. Overall, PDGFRA alterations were observed in 25% and 30% of patients in stratum A and B, respectively. Neither crenolanib therapy duration nor survival outcomes differed significantly by PDGFRA status, and overall survival of stratum A was similar to that of historical controls. CONCLUSIONS: Children tolerate crenolanib well at doses slightly higher than the established MTD in adults, with a toxicity spectrum generally similar to that in adults. Studies evaluating intratumoral PDGFR pathway inhibition in biomarker-enriched patients are needed to evaluate further the clinical utility of crenolanib in this population.

19.
Cancer ; 127(7): 1126-1133, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33259071

ABSTRACT

BACKGROUND: The St Jude Global Academy Neuro-Oncology Training Seminar (NOTS) is a hybrid course in pediatric neuro-oncology specifically designed for physicians from low-income and middle-income countries. METHODS: The curriculum for the course was created by conducting a targeted needs assessment that evaluated 11 domains of care for children with central nervous system (CNS) tumors. The targeted needs assessment was completed by 24 institutions across the world, and the data were used to define 5 core elements included in the 2 components of the NOTS: a 9-week online course and a 7-day in-person workshop. Participant acquisition of knowledge and changes in clinical behavior were evaluated as measures of success. RESULTS: Teams from 8 institutions located in 8 countries enrolled in the online course, and it was successfully completed by 36 participants representing 6 specialties. On the basis of their performance in the online course, 20 participants from 7 institutions took part in the on-site workshop. The participants exhibited improved knowledge in core elements of treating children with CNS tumors, including barriers of care, possible solutions, and steps for project implementation (P < .0001). All participants expressed a belief that they acquired new concepts and knowledge, leading to changes in their clinical practice. Those present at the workshop created an international multidisciplinary group focused on treating CNS tumors in low-income and middle-income countries. CONCLUSIONS: By using a hybrid online and in-person approach, the authors successfully created a multidisciplinary course focused on pediatric CNS tumors for resource-limited settings. Their experience supports this strategy as a feasible mechanism for driving further global collaborations.


Subject(s)
Central Nervous System Neoplasms/therapy , Clinical Competence , Curriculum , Education, Distance , Medical Oncology/education , Pediatrics/education , Developing Countries , Health Services Accessibility , Humans , International Cooperation , Needs Assessment , Neurosurgery/education , Radiation Oncology/education
20.
J Neurosurg Pediatr ; 26(5): 552-562, 2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32736346

ABSTRACT

OBJECTIVE: Biopsies of brainstem lesions are performed to establish a diagnosis in the setting of an atypical clinical or radiological presentation, or to facilitate molecular studies. A better understanding of the safety and diagnostic yield of brainstem biopsies would help guide appropriate patient selection. METHODS: All patients who underwent biopsy of a brainstem lesion during the period from January 2011 to June 2019 were reviewed. Demographic, radiological, surgical, and outcome data were collected. RESULTS: A total of 58 patients underwent 65 brainstem biopsies during the study period. Overall, the median age was 7.6 years (IQR 3.9-14.2 years). Twenty-two of the 65 biopsies (34%) were open, 42 (65%) were stereotactic, and 1 was endoscopic. In 3 cases (5%), a ventriculoperitoneal shunt was placed, and in 9 cases (14%), a posterior fossa decompression was performed during the same operative session as the biopsy. An intraoperative MRI (iMRI) was performed in 28 cases (43%). In 3 of these cases (11%), the biopsy was off target and additional samples were obtained during the same procedure. New neurological deficits were noted in 5 cases (8%), including sensory deficits, ophthalmoparesis/nystagmus, facial weakness, and hearing loss; these deficits persisted in 2 cases and were transient in 3 cases. A pseudomeningocele occurred in 1 patient; no patients developed a CSF leak or infection. In 8 cases (13%) an additional procedure was needed to obtain a diagnosis. CONCLUSIONS: Brainstem biopsies are safe and effective. Target selection and approach should be a collaborative effort. iMRI can be used to assess biopsy accuracy in real time, thereby allowing any adjustment if necessary.

SELECTION OF CITATIONS
SEARCH DETAIL
...