Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
J Air Waste Manag Assoc ; 74(5): 335-344, 2024 05.
Article in English | MEDLINE | ID: mdl-38407923

ABSTRACT

Azo dyes, when released untreated in the environment, cause detrimental effects on flora and fauna. Azoreductases are enzymes capable of cleaving commercially used azo dyes, sometimes in less toxic by-products which can be further degraded via synergistic microbial cometabolism. In this study, azoreductases encoded by FMN1 and FMN2 genes were screened from metagenome shotgun sequences generated from the samples of textile dye industries' effluents, cloned, expressed, and evaluated for their azo dye decolorization efficacy. At pH 7 and 45°C temperature, both recombinant enzymes FMN1 and FMN2 were able to decolorize methyl red at 20 and 100 ppm concentrations, respectively. FMN2 was found to be more efficient in decolorization/degradation of methyl red than FMN1. This study offers valuable insights into the possible application of azoreductases to reduce the environmental damage caused by azo dyes, with the hope of contributing to sustainable and eco-friendly practices for the environment management. This enzymatic approach offers a promising solution for the bioremediation of textile industrial effluents. However, the study acknowledges the need for further process optimization to enhance the efficacy of these enzymes in large-scale applications.Implications: The study underscores the environmental hazards associated with untreated release of azo dyes into the environment and emphasizes the potential of azoreductases, specifically those encoded by FMN1 and FMN2 genes, to mitigate the detrimental effects. The study emphasizes the ongoing commitment to refining and advancing the enzymatic approach for the bioremediation of azo dye-containing effluents, marking a positive stride toward more sustainable industrial practices.


Subject(s)
Cloning, Molecular , Industrial Waste , Nitroreductases , Textile Industry , Nitroreductases/genetics , Nitroreductases/metabolism , NADH, NADPH Oxidoreductases/genetics , NADH, NADPH Oxidoreductases/metabolism , Flavin Mononucleotide/metabolism , Azo Compounds/metabolism , Biodegradation, Environmental , Water Pollutants, Chemical/metabolism , Coloring Agents/metabolism , Metagenomics/methods
2.
Sci Data ; 11(1): 226, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388642

ABSTRACT

The present study describes the kidney transcriptome of Labeo rohita, a freshwater fish, exposed to gradually increased salinity concentrations (2, 4, 6 and 8ppt). A total of 10.25 Gbps data was generated, and a suite of bioinformatics tools, including FEELnc, CPC2 and BLASTn were employed for identification of long non-coding RNAs (lncRNAs) and micro RNAs (miRNAs). Our analysis revealed a total of 170, 118, 99, and 269 differentially expressed lncRNA and 120, 118, 99, and 124 differentially expressed miRNAs in 2, 4, 6 and 8 ppt treatment groups respectively. Two competing endogenous RNA (ceRNA) networks were constructed i.e. A* ceRNA network with up-regulated lncRNAs and mRNAs, down-regulated miRNAs; and B* ceRNA network vice versa. 2ppt group had 131 and 83 lncRNA-miRNA-mRNA pairs in A* and B* networks, respectively. 4ppt group featured 163 pairs in A* network and 191 in B* network, while the 6ppt had 103 and 105 pairs. 8ppt group included 192 and 174 pairs. These networks illuminate the intricate RNA interactions in freshwater fish to varying salinity conditions.


Subject(s)
Cypriniformes , MicroRNAs , RNA, Long Noncoding , RNA, Messenger , Animals , Gene Regulatory Networks , Kidney , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Transcriptome , Cypriniformes/genetics , Salinity
3.
Front Plant Sci ; 14: 1204828, 2023.
Article in English | MEDLINE | ID: mdl-37915505

ABSTRACT

Cumin (Cuminum cyminum L.), an important spice crop belonging to the Apiaceae family is infected by Fusarium oxysporum f. sp. cumini (Foc) to cause wilt disease, one of the most devastating diseases of cumin adversely affects its production. As immune responses of cumin plants against the infection of Foc are not well studied, this research aimed to identify the genes and pathways involved in responses of cumin (cv. GC-2, GC-3, GC-4, and GC-5) to the wilt pathogen. Differential gene expression analysis revealed a total of 2048, 1576, 1987, and 1174 differentially expressed genes (DEGs) in GC-2, GC-3, GC-4, and GC-5, respectively. In the resistant cultivar GC-4 (resistant against Foc), several important transcripts were identified. These included receptors, transcription factors, reactive oxygen species (ROS) generating and scavenging enzymes, non-enzymatic compounds, calcium ion (Ca2+) transporters and receptors, R-proteins, and PR-proteins. The expression of these genes is believed to play crucial roles in conferring resistance against Foc. Gene ontology (GO) analysis of the up-regulated DEGs showed significant enrichment of 19, 91, 227, and 55 biological processes in GC-2, GC-3, GC-4, and GC-5, respectively. Notably, the resistant cultivar GC-4 exhibited enrichment in key GO terms such as 'secondary metabolic process', 'response to reactive oxygen species', 'phenylpropanoid metabolic process', and 'hormone-mediated signaling pathway'. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed the enrichment of 28, 57, 65, and 30 pathways in GC-2, GC-3, GC-4, and GC-5, respectively, focusing on the up-regulated DEGs. The cultivar GC-4 showed enrichment in pathways related to steroid biosynthesis, starch and sucrose metabolism, fatty acid biosynthesis, butanoate metabolism, limonene and pinene degradation, and carotenoid biosynthesis. The activation or up-regulation of various genes and pathways associated with stress resistance demonstrated that the resistant cultivar GC-4 displayed enhanced defense mechanisms against Foc. These findings provide valuable insights into the defense responses of cumin that could contribute to the development of cumin cultivars with improved resistance against Foc.

4.
Front Genet ; 14: 1209843, 2023.
Article in English | MEDLINE | ID: mdl-37719712

ABSTRACT

Introduction: Brain being the master regulator of the physiology of animal, the current study focuses on the gene expression pattern of the brain tissue with special emphasis on regulation of growth, developmental process of an organism and cellular adaptation of Labeo rohita against unfavourable environmental conditions. Methods: RNA-seq study was performed on collected brain samples at 8ppt salt concentration and analyzed for differential gene expression, functional annotation and miRNA-mRNA regulatory network. Results: We found that 2450 genes were having significant differential up and down regulation. The study identified 20 hub genes based on maximal clique centrality algorithm. These hub genes were mainly involved in various signaling pathways, energy metabolism and ion transportation. Further, 326 up and 1214 down regulated genes were found to be targeted by 7 differentially expressed miRNAs i.e., oni-miR-10712, oni-miR-10736, ssa-miR-221-3p, ssa-miR-130d-1-5p, ssa-miR-144-5p and oni-miR-10628. Gene ontology analysis of these differentially expressed genes led to the finding that these genes were involved in signal transduction i.e., calcium, FOXO, PI3K-AKT, TGF-ß, Wnt and p53 signalling pathways. Differentially expressed genes were also involved in regulation of immune response, environmental adaptation i.e., neuroactive ligand-receptor interaction, ECM-receptor interaction, cell adhesion molecules and circadian entrainment, osmoregulation and energy metabolism, which are critical for salinity adaptation. Discussion: The findings of whole transcriptomic study on brain deciphered the miRNA-mRNA interaction patterns and pathways associated with salinity adaptation of L. rohita.

5.
BMC Genomics ; 24(1): 336, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37337199

ABSTRACT

BACKGROUND: Labeo rohita is the most preferred freshwater carp species in India. The concern of increasing salinity concentration in freshwater bodies due to climate change may greatly impact the aquatic environment. Gills are one of the important osmoregulatory organs and have direct contact with external environment. Hence, the current study is conducted to understand the gill transcriptomic response of L. rohita under hypersalinity environment. RESULTS: Comprehensive analysis of differentially expressed long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and mRNAs was performed in gills of L. rohita treated with 2, 4, 6 and 8ppt salinity concentrations. Networks of lncRNA-miRNA-mRNA revealed involvement of 20, 33, 52 and 61 differentially expressed lncRNAs, 11, 13, 26 and 21 differentially expressed miRNAs in 2, 4, 6 and 8ppt groups between control and treatment respectively. These lncRNA-miRNA pairs were regulating 87, 214, 499 and 435 differentially expressed mRNAs (DE mRNAs) in 2, 4, 6 and 8ppt treatments respectively. Functional analysis of these genes showed enrichment in pathways related to ion transportation and osmolyte production to cope with induced osmotic pressure due to high salt concentration. Pathways related to signal transduction (MAPK, FOXO and phosphatidylinositol signaling), and environmental information processing were also upregulated under hypersalinity. Energy metabolism and innate immune response pathways also appear to be regulated. Protein turnover was high at 8ppt as evidenced by enrichment of the proteasome and aminoacyl tRNA synthesis pathways, along with other enriched KEGG terms such as apoptosis, cellular senescence and cell cycle. CONCLUSION: Altogether, the RNA-seq analysis provided valuable insights into competitive endogenous (lncRNA-miRNA-mRNA) regulatory network of L. rohita under salinity stress. L. rohita is adapting to the salinity stress by means of upregulating protein turnover, osmolyte production and removing the damaged cells using apoptotic pathway and regulating the cell growth and hence diverting the essential energy for coping with salinity stress.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Animals , Gills/metabolism , RNA, Long Noncoding/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Salt Stress/genetics , Transcriptome , RNA, Messenger/genetics , Gene Regulatory Networks
6.
Cancer Rep (Hoboken) ; 6(4): e1787, 2023 04.
Article in English | MEDLINE | ID: mdl-36708238

ABSTRACT

BACKGROUND: MicroRNAs are a group of non-coding RNA that controls the gene expression. The interaction between miRNA and mRNA is thought to be dynamic. Oral cancer "The cancer of mouth" is quite prevailing in developing countries. miRNA has been found associated with oral cancer targeting tumor growth, cell proliferation, metastasis, invasion. The significant association of miRNA with genes could be used as a remarkable tool for diagnosis as well as prognostic analysis of oral cancer. AIM: The aim of the present study is to evaluate common upregulated and downregulated miRNAs in oral submucous fibrosis (OSMF) and oral malignancy (OM) patients that can be used as diagnostic biomarkers, and to find out their interactions with target genes to establish associated networks in cancer pathways. METHODS AND RESULTS: Using miRDeep2 and DESeq analysis, the upregulated and downregulated miRNA in OSMF (Oral Submucous Fibrosis) and OM (Oral Malignancies) samples were compared to GEO (Gene Expression Omnibus) control dataset. There were 50 common downregulated miRNAs and 13 common upregulated miRNAs in OSMF and OM samples. miRNet analysis of common upregulated miRNA and common downregulated miRNA identified 1295 and 5954 genes, respectively connected with cancer pathways. From analysis of Hub genes, HRAS, STAT3, TP53, MYC, PTEN, CTNNB1, CCND1, JUN, VEGFA, KRAS were found associated with downregulated miRNA and VEGFA, TP53, MDM2, PTEN, MYC, ERBB2, CDKN1A, HSP90AA1, CCND1, AKTI were found associated with upregulated miRNA. The gene enrichment analysis of these hub genes were associated with cell communication, metabolic process, cell proliferation, and cellular component organization. Hub Genes linked with upregulated miRNA had an enrichment ratio of 11.828, whereas hub genes linked with downregulated miRNA had an enrichment ratio of 45.912. CONCLUSION: We identified common deregulated miRNAs between OSMF and OM patients, which were further analyzed to find out associations with the genes correlated to cancer pathways. The hub genes identified in this study were found to have a significant impact on tumor growth and carcinogenesis. Also, the enrichment of these genes has revealed that the genes are associated with cellular communication, metabolic processes and various biological regulation. These deregulated miRNAs can be used to make a panel of biomarkers to diagnose oral cancer from blood even before its onset.


Subject(s)
MicroRNAs , Mouth Neoplasms , Oral Submucous Fibrosis , Humans , MicroRNAs/metabolism , Oral Submucous Fibrosis/genetics , Gene Regulatory Networks , Gene Expression Regulation, Neoplastic , Gene Expression Profiling/methods , Biomarkers, Tumor/genetics , Computational Biology/methods
7.
Protein Expr Purif ; 203: 106198, 2023 03.
Article in English | MEDLINE | ID: mdl-36379347

ABSTRACT

Nattokinase, a serine protease, was discovered in Bacillus subtilis during the fermentation of a soybean byproduct. Nattokinase is essential for the lysis of blood clots and the treatment of cardiac diseases including atherosclerosis, thrombosis, high blood pressure, and stroke. The demand for thrombolytic drugs rises as the prevalence of cardiovascular disease rises, and nattokinase is particularly effective for the treatment of cardiovascular diseases due to its long duration of action. In this study, we cloned the nattokinase gene from the Bacillus subtilis strain into the pET32a vector and expressed the protein in the E. coli BL21(DE3) strain. The active recombinant nattokinase was purified using Ni-NTA affinity chromatography and then evaluated for fibrinolytic and blood clot lysis activity. Physiological parameters for optimizing protein production at optimal pH, temperature, IPTG concentration, and incubation time were investigated. A statistical technique was used to optimize media components for nattokinase overproduction, and Central Composite Design-Response Surface Methodology-based optimization was used to select significant components for protein production. The optimized media produced 1805.50 mg/L of expressed nattokinase and 42.80 gm/L of bacterial mass. The fibrinolytic activity obtained from refolded native protein was 58FU/mg, which was five times higher than the available orokinase drug (11FU/mg). The efficiency with which a statistical technique for media optimization was implemented improved recombinant nattokinase production and provides new information for scale - up nattokinase toward industrial applications.


Subject(s)
Escherichia coli , Thrombosis , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , Bacillus subtilis/metabolism , Subtilisins/genetics , Subtilisins/chemistry , Subtilisins/metabolism , Fibrinolytic Agents/metabolism , Recombinant Proteins
8.
Front Physiol ; 13: 991366, 2022.
Article in English | MEDLINE | ID: mdl-36311223

ABSTRACT

The increasing salinization of freshwater resources, owing to global warming, has caused concern to freshwater aquaculturists. In this regard, the present study is aimed at economically important freshwater fish, L. rohita (rohu) adapting to varying degrees of salinity concentrations. The RNA-seq analysis of kidney tissue samples of L. rohita maintained at 2, 4, 6, and 8 ppt salinity was performed, and differentially expressed genes involved in various pathways were studied. A total of 755, 834, 738, and 716 transcripts were downregulated and 660, 926, 576, and 908 transcripts were up-regulated in 2, 4, 6, and 8 ppt salinity treatment groups, respectively, with reference to the control. Gene ontology enrichment analysis categorized the differentially expressed genes into 69, 154, 92, and 157 numbers of biological processes with the p value < 0.05 for 2, 4, 6, and 8 ppt salinity groups, respectively, based on gene functions. The present study found 26 differentially expressed solute carrier family genes involved in ion transportation and glucose transportation which play a significant role in osmoregulation. In addition, the upregulation of inositol-3-phosphate synthase 1A (INO1) enzyme indicated the role of osmolytes in salinity acclimatization of L. rohita. Apart from this, the study has also found a significant number of genes involved in the pathways related to salinity adaptation including energy metabolism, calcium ion regulation, immune response, structural reorganization, and apoptosis. The kidney transcriptome analysis elucidates a step forward in understanding the osmoregulatory process in L. rohita and their adaptation to salinity changes.

9.
Environ Res ; 212(Pt B): 113288, 2022 09.
Article in English | MEDLINE | ID: mdl-35427588

ABSTRACT

An upsurge in textile dye pollution has demanded immediate efforts to develop an optimum technology for their bioremediation. However, the molecular mechanism underpinning aerobic decolorization of dyes is still in its infancy. Thus, in the current work, the intricacies of aerobic remediation of textile dyes by Pseudomonas aeruginosa D6 were understood via a transcriptomic approach. The bacterium isolated from the sludge sample of a common effluent treatment plant was able to decolorize 54.42, 57.66, 50.84 and 65.86% of 100 mg L-1 of four different dyes i.e., TD01, TD04, TD05, and TD06, respectively. The maximum decolorization was achieved within six days and thus, the first and sixth day of incubation were selected for transcriptome analysis at the early and late phase of the decolorization, respectively. The expression profiles of all samples were compared to gain insight into the dye-specific response of bacterium and it was found that it behaved most uniquely in the presence of the dye TD01. Several genes critical to core metabolic processes like the TCA cycle, glycolysis, pentose phosphate pathway, translation, cell motility etc. Were found to be overexpressed in the presence of dyes. Interestingly, in response to dyes, the benzoate degradation pathway was significantly upregulated in the bacterium as compared to control (i.e., bacterium without dye). Thus, seven genes contributing to the induction of the same were further studied by RT-qPCR analysis. Overall, the involvement of the benzoate pathway implies the appearance of aromatic intermediates during decolorization, which in turn infers dye degradation.


Subject(s)
Pseudomonas aeruginosa , Textile Industry , Azo Compounds , Benzoates , Biodegradation, Environmental , Coloring Agents/analysis , Gene Expression Profiling , Pseudomonas aeruginosa/genetics , Textiles , Up-Regulation
10.
3 Biotech ; 7(4): 257, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28733938

ABSTRACT

A cellulase encoding gene, Cel PRII, was identified from Mehsani buffalo rumen metagenome, and cloned and expressed in Escherichia coli BL21(DE3)pLysS. The 1170 bp full length gene encodes a 389 residue polypeptide (Cel PRII) containing a catalytic domain belonging to glycosyl hydrolase (GH) 5 family. The fusion protein consisting of the Cel PRII, thioredoxin tag and 6x Histidine tag with predicted molecular weight of 63 kDa when recovered from inclusion bodies under denaturing conditions, exhibited cellulolytic activity against carboxymethyl cellulose (CMC). Recombinant Cel PRII was stable in the pH range 4.0-10.0 with pH optima 6.0. The optimal reaction temperature of Cel PRII was 30 °C with more than 50% of its activity retained at the temperatures ranging from 0 to 50 °C. Cel PRII exhibited enhanced enzymatic activity in the presence of Mn2+ ions and was inhibited in the presence of chelating agent EDTA. The K m and V max values for CMC were found to be 166 mg/mL and 1292 IU/mg, respectively. Cel PRII identified in the present study may act as an excellent candidate for industrial applications, and may aid in lignocellulosic biomass conversion because of its potential cellulolytic activity, thermostability, and excellent pH stability.

11.
Anaerobe ; 44: 106-116, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28246035

ABSTRACT

Recent advances in next generation sequencing technology have enabled analysis of complex microbial community from genome to transcriptome level. In the present study, metatranscriptomic approach was applied to elucidate functionally active bacteria and their biological processes in rumen of buffalo (Bubalus bubalis) adapted to different dietary treatments. Buffaloes were adapted to a diet containing 50:50, 75:25 and 100:0 forage to concentrate ratio, each for 6 weeks, before ruminal content sample collection. Metatranscriptomes from rumen fiber adherent and fiber-free active bacteria were sequenced using Ion Torrent PGM platform followed by annotation using MG-RAST server and CAZYmes (Carbohydrate active enzymes) analysis toolkit. In all the samples Bacteroidetes was the most abundant phylum followed by Firmicutes. Functional analysis using KEGG Orthology database revealed Metabolism as the most abundant category at level 1 within which Carbohydrate metabolism was dominating. Diet treatments also exerted significant differences in proportion of enzymes involved in metabolic pathways for VFA production. Carbohydrate Active Enzyme(CAZy) analysis revealed the abundance of genes encoding glycoside hydrolases with the highest representation of GH13 CAZy family in all the samples. The findings provide an overview of the activities occurring in the rumen as well as active bacterial population and the changes occurring through different dietary treatments.


Subject(s)
Buffaloes/microbiology , Diet/methods , Gastrointestinal Microbiome , Metagenomics , Rumen/microbiology , Animal Feed , Animals , Computational Biology , Gene Expression Profiling
12.
Vet Res Commun ; 41(1): 67-75, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28012117

ABSTRACT

OBJECTIVE: Chicken astroviruses have been known to cause severe disease in chickens leading to increased mortality and "white chicks" condition. Here we aim to characterize the causative agent of visceral gout suspected for astrovirus infection in broiler breeder chickens. METHODS: Total RNA isolated from allantoic fluid of SPF embryo passaged with infected chicken sample was sequenced by whole genome shotgun sequencing using ion-torrent PGM platform. The sequence was analysed for the presence of coding and non-coding features, its similarity with reported isolates and epitope analysis of capsid structural protein. RESULTS: The consensus length of 7513 bp genome sequence of Indian isolate of chicken astrovirus was obtained after assembly of 14,121 high quality reads. The genome was comprised of 13 bp 5'-UTR, three open reading frames (ORFs) including ORF1a encoding serine protease, ORF1b encoding RNA dependent RNA polymerase (RdRp) and ORF2 encoding capsid protein, and 298 bp of 3'-UTR which harboured two corona virus stem loop II like "s2m" motifs and a poly A stretch of 19 nucleotides. The genetic analysis of CAstV/INDIA/ANAND/2016 suggested highest sequence similarity of 86.94% with the chicken astrovirus isolate CAstV/GA2011 followed by 84.76% with CAstV/4175 and 74.48%% with CAstV/Poland/G059/2014 isolates. The capsid structural protein of CAstV/INDIA/ANAND/2016 showed 84.67% similarity with chicken astrovirus isolate CAstV/GA2011, 81.06% with CAstV/4175 and 41.18% with CAstV/Poland/G059/2014 isolates. However, the capsid protein sequence showed high degree of sequence identity at nucleotide level (98.64-99.32%) and at amino acids level (97.74-98.69%) with reported sequences of Indian isolates suggesting their common origin and limited sequence divergence. The epitope analysis by SVMTriP identified two unique epitopes in our isolate, seven shared epitopes among Indian isolates and two shared epitopes among all isolates except Poland isolate which carried all distinct epitopes.


Subject(s)
Avastrovirus/genetics , Genome, Viral/genetics , Animals , Avastrovirus/classification , Avastrovirus/isolation & purification , Chickens , Epitopes/genetics , India , Sequence Homology, Nucleic Acid
13.
Virusdisease ; 27(2): 161-9, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27366767

ABSTRACT

Recurrent outbreaks of infectious bursal disease (IBD) have become a burning problem to the poultry industry worldwide. Here, we performed genetic analysis of IBD virus (IBDV) field isolates from recent outbreaks in various poultry farms in India. The sequence analysis of IBDV VP2 hypervariable region revealed amino acid pattern similar to that of very virulent (222A, 242I, 253Q, 256I, 272I, 279D, 284A, 294I, 299S and 330S) and intermediate plus virulent (222A, 242I, 253Q, 256I, 272T, 279N, 284A, 294I, 299S and 330S) type whereas analysis of VP1 revealed presence of sequence similar to that of very virulent (61I, 145T) and unique (61I, 141I, 143D, 145S) type in field isolates. Among the eight field isolates, two isolates contained very virulent type VP2 and unique type VP1, three contained intermediate plus virulent type VP2 and unique type VP1 whereas five contained both VP2 and VP1 of very virulent type. The phylogenetic analysis based on VP2 nucleotide sequence showed clustering of all eight isolates close to known very virulent strains whereas based on VP1, five isolates formed unique cluster and three isolates were placed close to very virulent strains. The isolates forming unique VP1 cluster showed highest similarity with classical virulent IBDVs suggesting their possible evolution from segment B of non-very virulent IBDVs. Interestingly, these five isolates were responsible for outbreaks in four different farms located at three different geographic locations in India. These observations indicates genetic reassortment between segment A and segment B from co-infecting IBDV strains leading to emergence of very virulent strains and their widespread prevalence in Indian poultry farms. The presence of 272I and 279D in VP2 protein of five field isolates may explain possible cause of Gumboro intermediate plus vaccine failure in prevention of the outbreaks. However, mortality caused by other three strains which are antigenically similar to VP1 of intermediate plus vaccine strains could not be explained and the possible role of their unique VP1 in enhancing the pathogenesis needs to be investigated further.

14.
J Mol Microbiol Biotechnol ; 26(4): 252-60, 2016.
Article in English | MEDLINE | ID: mdl-27174428

ABSTRACT

Phytases have been widely used as animal feed supplements to increase the availability of digestible phosphorus, especially in monogastric animals fed cereal grains. The present study describes the identification of a full-length phytase gene of Prevotella species present in Mehsani buffalo rumen. The gene, designated as RPHY1, consists of 1,251 bp and is expressed into protein with 417 amino acids. A homology search of the deduced amino acid sequence of the RPHY1 phytase gene in a nonredundant protein database showed that it shares 92% similarity with the histidine acid phosphatase domain. Subsequently, the RPHY1 gene was expressed using a pET32a expression vector in Escherichia coli BL21 and purified using a His60 Ni-NTA gravity column. The mass of the purified RPHY1 was estimated to be approximately 63 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimal RPHY1 enzyme activity was observed at 55°C (pH 5) and exhibited good stability at 5°C and within the acidic pH range. Significant inhibition of RPHY1 activity was observed for Mg2+ and K+ metal ions, while Ca2+, Mn2+, and Na+ slightly inhibited enzyme activity. The RPHY1 phytase was susceptible to SDS, and it was highly stimulated in the presence of EDTA. Overall, the observed comparatively high enzyme activity levels and characteristics of the RPHY1 gene mined from rumen prove its promising candidature as a feed supplement enzyme in animal farming.


Subject(s)
6-Phytase/genetics , 6-Phytase/metabolism , Metagenome , Prevotella/enzymology , Prevotella/genetics , Rumen/microbiology , 6-Phytase/chemistry , Animals , Buffaloes , Chromatography, Affinity , Cloning, Molecular , Electrophoresis, Polyacrylamide Gel , Enzyme Inhibitors/analysis , Enzyme Stability , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Hydrogen-Ion Concentration , Molecular Weight , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Homology , Temperature
15.
Front Microbiol ; 7: 2119, 2016.
Article in English | MEDLINE | ID: mdl-28082972

ABSTRACT

Earlier, targeting of DDX3 by few viral proteins has defined its role in mRNA transport and induction of interferon production. This study was conducted to investigate the function of bovine adenovirus (BAdV)-3 pVIII during virus infection. Here, we provided evidence regarding involvement of DDX3 in cap dependent cellular mRNA translation and demonstrated that targeting of DDX3 by adenovirus protein VIII interfered with cap-dependent mRNA translation function of DDX3 in virus infected cells. Adenovirus late protein pVIII interacted with DDX3 in transfected and BAdV-3 infected cells. pVIII inhibited capped mRNA translation in vitro and in vivo by limiting the amount of DDX3 and eIF3. Diminished amount of DDX3 and eIFs including eIF3, eIF4E, eIF4G, and PABP were present in cap binding complex in BAdV-3 infected or pVIII transfected cells with no trace of pVIII in cap binding complex. The total amount of eIFs appeared similar in uninfected or infected cells as BAdV-3 did not appear to degrade eIFs. The co-immunoprecipitation experiments indicated the absence of direct interaction between pVIII and eIF3, eIF4E, or PABP. These data indicate that interaction of pVIII with DDX3 interferes with the binding of eIF3, eIF4E and PABP to the 5' Cap. We conclude that DDX3 promotes cap-dependent cellular mRNA translation and BAdV-3 pVIII inhibits translation of capped cellular mRNA possibly by interfering with the recruitment of eIFs to the capped cellular mRNA.

16.
Biotechnol Appl Biochem ; 63(2): 257-65, 2016.
Article in English | MEDLINE | ID: mdl-25644118

ABSTRACT

Rumen microbiota harbor a diverse set of carbohydrate-active enzymes (CAZymes), which play a crucial role in the degradation of a complex plant polysaccharide thereby providing metabolic energy to the host animals. Earlier, we reported CAZYme analysis from the buffalo rumen metagenome by high throughput shotgun sequencing. Among the various CAZymes, glycoside hydrolase family 26 (GH26) enzymes have a number of industrial applications including in paper, oil, biofuel, food, feed, pharmaceutical, coffee, and detergent industries. Here, we report isolation and characterization of GH26 enzyme from the buffalo rumen metagenome. A novel GH26 gene composed of 1,119 base pairs was successfully amplified using the gene-specific primers inferred based on the contig generated from metagenome sequence assembly and cloned in a pET32a (+) expression vector as an N-terminal histidine tag fusion protein. A novel GH26 protein from an unknown rumen microorganism shared a maximum of 68% identity with the Prevotella ruminicola 23 encoded carbohydrate esterase family 7 and 46% with Bacteroides sp. 2_1_33B encoded mannan endo-1, 4-ß-mannosidase. The recombinant GH26-histidine tag fusion protein was expressed in Escherichia coli and purified using Ni-NTA affinity chromatography. The purified enzyme displayed multifunctional activities against various carbohydrate substrates including locust bean gum, beechwood xylan, pectin, and carboxymethyl cellulose suggesting mannanase, xylanase, pectin esterase, and endoglucanase activities, respectively.


Subject(s)
Buffaloes/microbiology , Glycoside Hydrolases/isolation & purification , Glycoside Hydrolases/metabolism , Metagenome , Rumen/microbiology , Animals , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Rumen/enzymology
17.
BMC Genomics ; 16: 1116, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26714477

ABSTRACT

BACKGROUND: The rumen microbiota functions as an effective system for conversion of dietary feed to microbial proteins and volatile fatty acids. In the present study, metagenomic approach was applied to elucidate the buffalo rumen microbiome of Jaffrabadi buffalo adapted to varied dietary treatments with the hypothesis that the microbial diversity and subsequent in the functional capacity will alter with diet change and enhance our knowledge of effect of microbe on host physiology. Eight adult animals were gradually adapted to an increasing roughage diet (4 animals each with green and dry roughage) containing 50:50 (J1), 75:25 (J2) and 100:0 (J3) roughage to concentrate proportion for 6 weeks. Metagenomic sequences of solid (fiber adherent microbiota) and liquid (fiber free microbiota) fractions obtained using Ion Torrent PGM platform were analyzed using MG-RAST server and CAZymes approach. RESULTS: Taxonomic analysis revealed that Bacteroidetes was the most abundant phylum followed by Firmicutes, Fibrobacter and Proteobacteria. Functional analysis revealed protein (25-30 %) and carbohydrate (15-20 %) metabolism as the dominant categories. Principal component analysis demonstrated that roughage proportion, fraction of rumen and type of forage affected rumen microbiome at taxonomic as well as functional level. Rumen metabolite study revealed that rumen fluid nitrogen content reduced in high roughage diet fed animals and pathway analysis showed reduction in the genes coding enzymes involved in methanogenesis pathway. CAZyme annotation revealed the abundance of genes encoding glycoside hydrolases (GH), with the GH3 family most abundant followed by GH2 and GH13 in all samples. CONCLUSIONS: Results reveals that high roughage diet feed improved microbial protein synthesis and reduces methane emission. CAZyme analysis indicated the importance of microbiome in feed component digestion for fulfilling energy requirements of the host. The findings help determine the role of rumen microbes in plant polysaccharide breakdown and in developing strategies to maximize productivity in ruminants.


Subject(s)
Buffaloes/metabolism , Dietary Fiber/microbiology , Microbiota/genetics , Animals , Buffaloes/genetics , Glycoside Hydrolases/genetics , Metagenome/genetics , Metagenomics , Rumen
18.
J Mol Microbiol Biotechnol ; 25(4): 292-9, 2015.
Article in English | MEDLINE | ID: mdl-26304839

ABSTRACT

AIM: To reassemble Prevotella ruminicola genome from rumen metagenomic data of cattle and buffalo and compare with the published reference genome. METHOD: Rumen microbial communities from Mehsani buffaloes (n = 8) and Kankrej cattle (n = 8), each adapted to different proportions of a dry or green roughage diet, were subjected to metagenomic sequencing by Ion Torrent PGM, and subsequent reads were analyzed by MG-RAST. Using reference-guided assembly of the sequences against the published P. ruminicola strain 23, draft genomes of 2.56 and 2.46 Mb were reconstructed from Mehsani buffalo and Kankrej cows, respectively. The genomes were annotated using the RAST Server and carbohydrate active enzyme (CAZyme) analysis. RESULTS: Taxonomic analysis by MG-RAST revealed P. ruminicola to be the most abundant species present among the rumen microflora. Functional annotation of reconstructed genomes using the RAST Server depicted the maximum assignment of coding sequences involved in the subsystems amino acid and derivatives and carbohydrate metabolism. CAZyme profiling revealed the glycoside hydrolases (GH) family to be the most abundant. GH family subclassification revealed that the extracted genomes had more sequence hits for GH2, GH3, GH92 and GH97 as compared to the reference. CONCLUSION: The results reflect the metabolic significance of rumen-adapted P. ruminicola in utilizing a coarse diet for animals based on acquisition of novel genetic elements.


Subject(s)
Prevotella ruminicola/genetics , Rumen/microbiology , Animals , Bacteria/classification , Bacteria/enzymology , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Proteins/genetics , Buffaloes , Cattle , Gastrointestinal Microbiome , Genome, Bacterial , Metagenomics , Open Reading Frames , Phylogeny , Prevotella ruminicola/classification , Prevotella ruminicola/enzymology , Prevotella ruminicola/isolation & purification
19.
J Appl Genet ; 56(3): 411-26, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25663664

ABSTRACT

Understanding the methanogen community structure and methanogenesis from Bubalus bubalis in India may be beneficial to methane mitigation. Our current understanding of the microbial processes leading to methane production is incomplete, and further advancement in the knowledge of methanogenesis pathways would provide means to manipulate its emission in the future. In the present study, we evaluated the methanogenic community structure in the rumen as well as their potential genes involved in methanogenesis. The taxonomic and metabolic profiles of methanogens were assessed by shotgun sequencing of rumen metagenome by Ion Torrent semiconductor sequencing. The buffalo rumen contained representative genera of all the families of methanogens. Members of Methanobacteriaceae were found to be dominant, followed by Methanosarcinaceae, Methanococcaceae, Methanocorpusculaceae, and Thermococcaceae. A total of 60 methanogenic genera were detected in buffalo rumen. Methanogens related to the genera Methanobrevibacter, Methanosarcina, Methanococcus, Methanocorpusculum, Methanothermobacter, and Methanosphaera were predominant, representing >70 % of total archaeal sequences. The metagenomic dataset indicated the presence of genes involved in the methanogenesis and acetogenesis pathways, and the main functional genes were those of key enzymes in the methanogenesis. Sequences related to CoB--CoM heterodisulfide reductase, methyl coenzyme M reductase, f420-dependent methylenetetrahydromethanopterin reductase, and formylmethanofuran dehydrogenase were predominant in rumen. In addition, methenyltetrahydrofolate cyclohydrolase, methylenetetrahydrofolate dehydrogenase, 5,10-methylenetetrahydrofolate reductase, and acetyl-coenzyme A synthetase were also recovered.


Subject(s)
Buffaloes/microbiology , Metagenome , Methane/biosynthesis , Rumen/microbiology , Animals , DNA, Archaeal/genetics , Genetic Variation , Metabolome , Methanobacteriaceae/classification , Methanococcus/classification , Methanosarcina/classification , Microbiota , Sequence Analysis, DNA
20.
Biotechnol Prog ; 31(2): 452-9, 2015.
Article in English | MEDLINE | ID: mdl-25395261

ABSTRACT

Myostatin (MSTN) is a secreted growth factor that negatively regulates skeletal muscle mass, and therefore, strategies to block myostatin-signaling pathway have been extensively pursued to increase the muscle mass in livestock. Here, we report a lentiviral vector-based delivery of shRNA to disrupt myostatin expression into goat fetal fibroblasts (GFFs) that were commonly used as karyoplast donors in somatic-cell nuclear transfer (SCNT) studies. Sh-RNA positive cells were screened by puromycin selection. Using real-time polymerase chain reaction (PCR), we demonstrated efficient knockdown of endogenous myostatin mRNA with 64% down-regulation in sh2 shRNA-treated GFF cells compared to GFF cells treated by control lentivirus without shRNA. Moreover, we have also demonstrated both the induction of interferon response and the expression of genes regulating myogenesis in GFF cells. The results indicate that myostatin-targeting siRNA produced endogenously could efficiently down-regulate myostatin expression. Therefore, targeted knockdown of the MSTN gene using lentivirus-mediated shRNA transgenics would facilitate customized cell engineering, allowing potential use in the establishment of stable cell lines to produce genetically engineered animals.


Subject(s)
Gene Knockdown Techniques/methods , Lentivirus/genetics , Myostatin/genetics , RNA Interference/physiology , Animals , Cells, Cultured , Fibroblasts , Genetic Vectors/genetics , Goats/genetics , HEK293 Cells , Humans , Myostatin/analysis , Myostatin/metabolism , RNA, Small Interfering/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...