Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3900, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724552

ABSTRACT

By incompletely understood mechanisms, type 2 (T2) inflammation present in the airways of severe asthmatics drives the formation of pathologic mucus which leads to airway mucus plugging. Here we investigate the molecular role and clinical significance of intelectin-1 (ITLN-1) in the development of pathologic airway mucus in asthma. Through analyses of human airway epithelial cells we find that ITLN1 gene expression is highly induced by interleukin-13 (IL-13) in a subset of metaplastic MUC5AC+ mucus secretory cells, and that ITLN-1 protein is a secreted component of IL-13-induced mucus. Additionally, we find ITLN-1 protein binds the C-terminus of the MUC5AC mucin and that its deletion in airway epithelial cells partially reverses IL-13-induced mucostasis. Through analysis of nasal airway epithelial brushings, we find that ITLN1 is highly expressed in T2-high asthmatics, when compared to T2-low children. Furthermore, we demonstrate that both ITLN-1 gene expression and protein levels are significantly reduced by a common genetic variant that is associated with protection from the formation of mucus plugs in T2-high asthma. This work identifies an important biomarker and targetable pathways for the treatment of mucus obstruction in asthma.


Subject(s)
Asthma , GPI-Linked Proteins , Interleukin-13 , Lectins , Mucin 5AC , Mucus , Child , Humans , Asthma/genetics , Asthma/metabolism , Cytokines , Epithelial Cells/metabolism , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Interleukin-13/genetics , Interleukin-13/metabolism , Lectins/genetics , Lectins/metabolism , Mucin 5AC/genetics , Mucin 5AC/metabolism , Mucus/metabolism , Nasal Mucosa/metabolism , Polymorphism, Genetic , Respiratory Mucosa/metabolism
2.
J Allergy Clin Immunol ; 150(2): 302-311, 2022 08.
Article in English | MEDLINE | ID: mdl-35660376

ABSTRACT

BACKGROUND: Whether children and people with asthma and allergic diseases are at increased risk for severe acute respiratory syndrome virus 2 (SARS-CoV-2) infection is unknown. OBJECTIVE: Our aims were to determine the incidence of SARS-CoV-2 infection in households with children and to also determine whether self-reported asthma and/or other allergic diseases are associated with infection and household transmission. METHODS: For 6 months, biweekly nasal swabs and weekly surveys were conducted within 1394 households (N = 4142 participants) to identify incident SARS-CoV-2 infections from May 2020 to February 2021, which was the pandemic period largely before a vaccine and before the emergence of SARS-CoV-2 variants. Participant and household infection and household transmission probabilities were calculated by using time-to-event analyses, and factors associated with infection and transmission risk were determined by using regression analyses. RESULTS: In all, 147 households (261 participants) tested positive for SARS-CoV-2. The household SARS-CoV-2 infection probability was 25.8%; the participant infection probability was similar for children (14.0% [95% CI = 8.0%-19.6%]), teenagers (12.1% [95% CI = 8.2%-15.9%]), and adults (14.0% [95% CI = 9.5%-18.4%]). Infections were symptomatic in 24.5% of children, 41.2% of teenagers, and 62.5% of adults. Self-reported doctor-diagnosed asthma was not a risk factor for infection (adjusted hazard ratio [aHR] = 1.04 [95% CI = 0.73-1.46]), nor was upper respiratory allergy or eczema. Self-reported doctor-diagnosed food allergy was associated with lower infection risk (aHR = 0.50 [95% CI = 0.32-0.81]); higher body mass index was associated with increased infection risk (aHR per 10-point increase = 1.09 [95% CI = 1.03-1.15]). The household secondary attack rate was 57.7%. Asthma was not associated with household transmission, but transmission was lower in households with food allergy (adjusted odds ratio = 0.43 [95% CI = 0.19-0.96]; P = .04). CONCLUSION: Asthma does not increase the risk of SARS-CoV-2 infection. Food allergy is associated with lower infection risk, whereas body mass index is associated with increased infection risk. Understanding how these factors modify infection risk may offer new avenues for preventing infection.


Subject(s)
Asthma , COVID-19 , Hypersensitivity , Adolescent , Adult , Asthma/epidemiology , COVID-19/epidemiology , Child , Humans , Hypersensitivity/epidemiology , Prospective Studies , Risk Factors , SARS-CoV-2
3.
ACS Omega ; 5(14): 7910-7918, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32309700

ABSTRACT

Because of the limitations imposed by traditional two-dimensional (2D) cultures, biomaterials have become a major focus in neural and tissue engineering to study cell behavior in vitro. 2D systems fail to account for interactions between cells and the surrounding environment; these cell-matrix interactions are important to guide cell differentiation and influence cell behavior such as adhesion and migration. Biomaterials provide a unique approach to help mimic the native microenvironment in vivo. In this study, a novel microfluidic technique is used to encapsulate adult rat hippocampal stem/progenitor cells (AHPCs) within alginate-based fibrous hydrogels. To our knowledge, this is the first study to encapsulate AHPCs within a fibrous hydrogel. Alginate-based hydrogels were cultured for 4 days in vitro and recovered to investigate the effects of a 3D environment on the stem cell fate. Post recovery, cells were cultured for an additional 24 or 72 h in vitro before fixing cells to determine if proliferation and neuronal differentiation were impacted after encapsulation. The results indicate that the 3D environment created within a hydrogel is one factor promoting AHPC proliferation and neuronal differentiation (19.1 and 13.5%, respectively); however, this effect is acute. By 72 h post recovery, cells had similar levels of proliferation and neuronal differentiation (10.3 and 8.3%, respectively) compared to the control conditions. Fibrous hydrogels may better mimic the natural micro-environment present in vivo and be used to encapsulate AHPCs, enhancing cell proliferation and selective differentiation. Understanding cell behavior within 3D scaffolds may lead to the development of directed therapies for central nervous system repair and rescue.

4.
J Neurosci Methods ; 328: 108419, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31472190

ABSTRACT

BACKGROUND: Primary cell culture is a valuable tool to utilize in parallel with in vivo studies in order to maximize our understanding of the mechanisms surrounding neurogenesis and central nervous system (CNS) regeneration and plasticity. The zebrafish is an important model for biomedical research and primary neural cells are readily obtainable from their embryonic stages viatissue dissociation. Further, transgenic reporter lines with cell type-specific expression allows for observation of distinct cell populations within the dissociated tissue. NEW METHOD: Here, we define an efficient method for ex vivo quantification and characterization of neuronal and glial tissue dissociated from embryonic zebrafish. RESULTS: Zebrafish brain dissociated cells have been documented to survive in culture for at least 9 days in vitro (div). Anti-HuC/D and anti-Acetylated Tubulin antibodies were used to identify neurons in culture; at 3 div approximately 48% of cells were HuC/D positive and 85% expressed serotonin, suggesting our protocol can efficiently isolate neurons from whole embryonic zebrafish brains. Live time-lapse imaging was also carried out to analyze cell migration in vitro. COMPARISON WITH EXISTING METHODS: Primary cultures of zebrafish neural cells typically have low rates of survivability in vitro. We have developed a culture system that has long term cell viability, enabling direct analysis of cell-cell and cell-extracellular matrix interactions. CONCLUSIONS: These results demonstrate a practical method for isolating, dissociating and culturing of embryonic zebrafish neural tissue. This approach could further be utilized to better understand zebrafish regeneration in vitro.


Subject(s)
Neuroglia , Neurons , Neurosciences/methods , Primary Cell Culture/methods , Zebrafish , Animals , Animals, Genetically Modified , Embryo, Nonmammalian , Neuroglia/cytology , Neuroglia/physiology , Neurons/cytology , Neurons/physiology
5.
ACS Appl Mater Interfaces ; 11(20): 18797-18807, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31042026

ABSTRACT

Bow tie-shaped fibers and spherical microparticles with controlled dimensions and shapes were fabricated with poly(ethylene glycol) diacrylate hydrogel utilizing hydrodynamic shear principles and a photopolymerization strategy under a microfluidic regime. Decreasing the flow rate ratio between the core and sheath fluids from 25 (50:2) to 1.25 (100:80) resulted in increasing the particles size and reducing the production rate by 357 and 86%, respectively. The width of the fibers increased by a factor of 1.4 when the flow rate ratio was reduced from 2.5 to 1 due to the decrease of the shear force at the fluid/fluid interface. The stress at break and Young's modulus of the fibers were enhanced by 32 and 63%, respectively, when the sheath-to-core flow rate ratio decreased from 100:40 to 100:80. The fiber fabrication was simulated using the finite element method, and the numerical and experimental results were in agreement. Adult hippocampal stem/progenitor cells and bone-marrow-derived multipotent mesenchymal stromal cells were seeded onto the fibrous scaffolds in vitro, and cellular adhesion, proliferation, and differentiation were investigated. Microgrooves on the fibers' surface were shown to positively affect cell adhesion when compared to flat fibers and planar controls.

6.
Macromol Biosci ; 19(2): e1800236, 2019 02.
Article in English | MEDLINE | ID: mdl-30480879

ABSTRACT

Biomaterials are essential for the development of innovative biomedical and therapeutic applications. Biomaterials-based scaffolds can influence directed cell differentiation to improve cell-based strategies. Using a novel microfluidics approach, poly (ε-caprolactone) (PCL), is used to fabricate microfibers with varying diameters (3-40 µm) and topographies (straight and wavy). Multipotent adult rat hippocampal stem/progenitor cells (AHPCs) are cultured on 3D aligned PCL microfibrous scaffolds to investigate their ability to differentiate into neurons, astrocytes, and oligodendrocytes. The results indicate that the PCL microfibers significantly enhance proliferation of the AHPCs compared to control, 2D planar substrates. While the AHPCs maintained their multipotent differentiation capacity when cultured on the PCL scaffolds, there is a significant and dramatic increase in immunolabeling for astrocyte and oligodendrocyte differentiation when compared with growth on planar surfaces. Our results show a 3.5-fold increase in proliferation and 23.4-fold increase in astrocyte differentiation for cells on microfibers. Transplantation of neural stem/progenitor cells within a PCL microfiber scaffold may provide important biological and topographic cues that facilitate the survival, selective differentiation, and integration of transplanted cells to improve therapeutic strategies.


Subject(s)
Adult Stem Cells/cytology , Astrocytes/cytology , Neural Stem Cells/cytology , Neurons/cytology , Oligodendroglia/cytology , Tissue Engineering/methods , Animals , Biocompatible Materials/chemistry , Brain Injuries/therapy , Cell Adhesion/physiology , Cell Differentiation/physiology , Cell Proliferation/physiology , Cells, Cultured , Hippocampus/cytology , Methacrylates/chemistry , Microfluidics/methods , Neurodegenerative Diseases/therapy , Neurogenesis/physiology , Polyesters/chemistry , Rats , Tissue Scaffolds/chemistry
7.
Biomacromolecules ; 17(10): 3287-3297, 2016 10 10.
Article in English | MEDLINE | ID: mdl-27598294

ABSTRACT

Fibrous scaffolds have shown promise in tissue engineering due to their ability to improve cell alignment and migration. In this paper, poly(ε-caprolactone) (PCL) fibers are fabricated in different sizes using a microfluidic platform. By using this approach, we demonstrated considerable flexibility in ability to control the size of the fibers. It was shown that the average diameter of the fibers was obtained in the range of 2.6-36.5 µm by selecting the PCL solution flow rate from 1 to 5 µL min-1 and the sheath flow rate from 20 to 400 µL min-1 in the microfluidic channel. The microfibers were used to create 3D microenvironments in order to investigate growth and differentiation of adult hippocampal stem/progenitor cells (AHPCs) in vitro. The results indicated that the 3D topography of the PCL substrates, along with chemical (extracellular matrix) guidance cues supported the adhesion, survival, and differentiation of the AHPCs. Additionally, it was found that the cell deviation angle for 44-66% of cells on different types of fibers was less than 10°. This reveals the functionality of PCL fibrous scaffolds for cell alignment important in applications such as reconnecting serious nerve injuries and guiding the direction of axon growth as well as regenerating blood vessels, tendons, and muscle tissue.


Subject(s)
Cell Differentiation/drug effects , Neural Stem Cells/drug effects , Tissue Engineering , Blood Vessels/drug effects , Blood Vessels/growth & development , Cell Proliferation/drug effects , Cellular Microenvironment/drug effects , Humans , Lab-On-A-Chip Devices , Muscles/drug effects , Nanofibers/chemistry , Nanofibers/therapeutic use , Polyesters/chemistry , Polyesters/therapeutic use , Tendons/drug effects , Tendons/growth & development , Tissue Scaffolds/chemistry
8.
Genes Dis ; 2(3): 247-254, 2015 Sep.
Article in English | MEDLINE | ID: mdl-30258868

ABSTRACT

This review considers available evidence for mechanisms of conferred adaptive advantages in the face of specific infectious diseases. In short, we explore a number of genetic conditions, which carry some benefits in adverse circumstances including exposure to infectious agents. The examples discussed are conditions known to result in resistance to a specific infectious disease, or have been proposed as being associated with resistance to various infectious diseases. These infectious disease-genetic disorder pairings include malaria and hemoglobinopathies, cholera and cystic fibrosis, tuberculosis and Tay-Sachs disease, mycotic abortions and phenylketonuria, infection by enveloped viruses and disorders of glycosylation, infection by filoviruses and Niemann-Pick C1 disease, as well as rabies and myasthenia gravis. We also discuss two genetic conditions that lead to infectious disease hypersusceptibility, although we did not cover the large number of immunologic defects leading to infectious disease hypersusceptibilities. Four of the resistance-associated pairings (malaria/hemogloginopathies, cholera/cystic fibrosis, tuberculosis/Tay-Sachs, and mycotic abortions/phenylketonuria) appear to be a result of selection pressures in geographic regions in which the specific infectious agent is endemic. The other pairings do not appear to be based on selection pressure and instead may be serendipitous. Nonetheless, research investigating these relationships may lead to treatment options for the aforementioned diseases by exploiting established mechanisms between genetically affected cells and infectious organisms. This may prove invaluable as a starting point for research in the case of diseases that currently have no reliably curative treatments, e.g., HIV, rabies, and Ebola.

SELECTION OF CITATIONS
SEARCH DETAIL
...