Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Am J Biol Anthropol ; 184(3): e24939, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38631677

ABSTRACT

OBJECTIVES: Calcaneal external shape differs among nonhuman primates relative to locomotion. Such relationships between whole-bone calcaneal trabecular structure and locomotion, however, have yet to be studied. Here we analyze calcaneal trabecular architecture in Gorilla gorilla gorilla, Gorilla beringei beringei, and G. b. graueri to investigate general trends and fine-grained differences among gorilla taxa relative to locomotion. MATERIALS AND METHODS: Calcanei were micro-CT scanned. A three-dimensional geometric morphometric sliding semilandmark analysis was carried out and the final landmark configurations used to position 156 volumes of interest. Trabecular thickness (Tb.Th), trabecular spacing (Tb.Sp), and bone volume fraction (BV/TV) were calculated using the BoneJ plugin for ImageJ and MATLAB. Non-parametric MANOVAs were run to test for significant differences among taxa in parameter raw values and z-scores. Parameter distributions were visualized using color maps and summarized using principal components analysis. RESULTS: There are no significant differences in raw BV/TV or Tb.Th among gorillas, however G. b. beringei significantly differs in z-scores for both parameters (p = <0.0271). All three taxa exhibit relatively lower BV/TV and Tb.Th in the posterior half of the calcaneus. This gradation is exacerbated in G. b. beringei. G. b. graueri significantly differs from other taxa in Tb.Sp z-scores (p < 0.001) indicating a different spacing distribution. DISCUSSION: Relatively higher Tb.Th and BV/TV in the anterior calcaneus among gorillas likely reflects higher forces associated with body mass (transmitted through the subtalar joint) relative to forces transferred through the posterior calcaneus. The different Tb.Sp pattern in G. b. graueri may reflect proposed differences in foot positioning during locomotion.


Subject(s)
Calcaneus , Cancellous Bone , Gorilla gorilla , Animals , Calcaneus/anatomy & histology , Calcaneus/physiology , Calcaneus/diagnostic imaging , Gorilla gorilla/anatomy & histology , Gorilla gorilla/physiology , Cancellous Bone/anatomy & histology , Cancellous Bone/diagnostic imaging , Cancellous Bone/physiology , Male , X-Ray Microtomography , Female , Anthropology, Physical , Locomotion/physiology
2.
Commun Biol ; 6(1): 1061, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37857853

ABSTRACT

The evolution of the medial longitudinal arch (MLA) is one of the most impactful adaptations in the hominin foot that emerged with bipedalism. When and how it evolved in the human lineage is still unresolved. Complicating the issue, clinical definitions of flatfoot in living Homo sapiens have not reached a consensus. Here we digitally investigate the navicular morphology of H. sapiens (living, archaeological, and fossil), great apes, and fossil hominins and its correlation with the MLA. A distinctive navicular shape characterises living H. sapiens with adult acquired flexible flatfoot, while the congenital flexible flatfoot exhibits a 'normal' navicular shape. All H. sapiens groups differentiate from great apes independently from variations in the MLA, likely because of bipedalism. Most australopith, H. naledi, and H. floresiensis navicular shapes are closer to those of great apes, which is inconsistent with a human-like MLA and instead might suggest a certain degree of arboreality. Navicular shape of OH 8 and fossil H. sapiens falls within the normal living H. sapiens spectrum of variation of the MLA (including congenital flexible flatfoot and individuals with a well-developed MLA). At the same time, H. neanderthalensis seem to be characterised by a different expression of the MLA.


Subject(s)
Flatfoot , Hominidae , Adult , Animals , Humans , Hominidae/anatomy & histology , Foot/anatomy & histology , Fossils
3.
Am J Biol Anthropol ; 177(3): 581-602, 2022 03.
Article in English | MEDLINE | ID: mdl-35755956

ABSTRACT

Current approaches to quantify phalangeal curvature assume that the long axis of the bone's diaphysis approximates the shape of a portion of a circle (included angle method) or a parabola (second-degree polynomial method). Here we developed, tested, and employed an alternative geometric morphometrics-based approach to quantify diaphysis shape of proximal phalanges in humans, apes and monkeys with diverse locomotor behaviors. 100 landmarks of the central longitudinal axis were extracted from 3D surface models and analyzed using 2DGM methods, including Generalized Procrustes Analyses. Principal components analyses were performed and PC1 scores (>80% of variation) represented the dorsopalmar shape of the bone's central longitudinal axis and separated taxa consistently and in accord with known locomotor behavioral profiles. The most suspensory taxa, including orangutans, hylobatids and spider monkeys, had significantly lower PC1 scores reflecting the greatest amounts of phalangeal curvature. In contrast, bipedal humans and the quadrupedal cercopithecoid monkeys sampled (baboons, proboscis monkeys) exhibited significantly higher PC1 scores reflecting flatter phalanges. African ape (gorillas, chimpanzees and bonobos) phalanges fell between these two extremes and were not significantly different from each other. PC1 scores were significantly correlated with both included angle and the a coefficient of a second-degree polynomial calculated from the same landmark dataset, but had a significantly higher correlation with included angles. Our alternative approach for quantifying diaphysis shape of proximal phalanges to investigate dorsopalmar curvature is replicable and does not assume a priori either a circle or parabola model of shape, making it an attractive alternative compared with existing methodologies.


Subject(s)
Atelinae , Finger Phalanges , Hominidae , Animals , Diaphyses/diagnostic imaging , Finger Phalanges/diagnostic imaging , Gorilla gorilla
4.
Am J Biol Anthropol ; 177(1): 27-38, 2022 01.
Article in English | MEDLINE | ID: mdl-36787780

ABSTRACT

OBJECTIVES: Primate leap performance varies with body size, where performance will be optimized in lightweight individuals due to the inverse relationship between force generation and body mass. With all other factors equal, it is less energetically costly to swing a light hindlimb than a heavier hindlimb. Previous work on the calcaneus of galagids hypothesized that bone volume in leaping galagids may be minimized to decrease overall hindlimb mass. We predict that (1) lighter taxa will exhibit relatively less calcaneal bone volume than heavier taxa, and (2) taxa that are high-frequency leapers will exhibit relatively less bone volume than lower frequency leapers. MATERIALS AND METHODS: Relationships among bone volume, body size, and leap frequency (high vs. low) were examined in a sample of 51 individuals from four genera of galagids (Euoticus, Galago, Galagoides, and Otolemur) that differ in the percentage of time engaged in leaping locomotion. Using µCT scans of calcanei, we quantified relative bone volume (BV/TV) of the distal calcaneal segment and predicted that it would vary with body size and frequency of leaping locomotion. RESULTS: Phylogenetic generalized least squares (PGLS) regression models indicate that body size, but not leaping frequency, affects BV/TV in the distal calcaneus. Relative bone volume increases with body size, supporting our first hypothesis. DISCUSSION: These results support previous work demonstrating a positive correlation between BV/TV and body size. With some exceptions, small galagids tend to have less BV/TV than larger galagids. Leaping frequency does not relate to BV/TV in this sample; larger taxonomic and/or behavioral sampling may provide additional insights.


Subject(s)
Calcaneus , Galagidae , Animals , Phylogeny , Calcaneus/diagnostic imaging , Primates , Body Size , Galago
5.
J Hum Evol ; 161: 103078, 2021 12.
Article in English | MEDLINE | ID: mdl-34749002

ABSTRACT

In 2000, a complete fourth metatarsal (Mt4) of the ∼3- to 4-Million-year-old hominin Australopithecus afarensis was recovered in Hadar, Ethiopia. This metatarsal presented a mostly human-like morphology, suggesting that a rigid lateral foot may have evolved as early as ∼3.2 Ma. The lateral foot is integral in providing stability during the push off phase of gait and is key in understanding the transition to upright, striding bipedalism. Previous comparisons of this fossil were limited to Pan troglodytes, Gorilla gorilla, and modern humans. This study builds on previous studies by contextualizing the Mt4 morphology of A. afarensis (A.L. 333-160) within a diverse comparative sample of nonhuman hominoids (n = 144) and cercopithecids (n = 138) and incorporates other early hominins (n = 3) and fossil hominoids that precede the Pan-Homo split (n = 4) to better assess the polarity of changes in lateral foot morphology surrounding this divergence. We investigate seven morphological features argued to be functionally linked to human-like bipedalism. Our results show that some human-like characters used to assess midfoot and lateral foot stiffness in the hominin fossil record are present in our Miocene ape sample as well as in living cercopithecids. Furthermore, modern nonhuman hominoids can be generally distinguished from other species in most metrics. These results suggest that the possession of a rigid foot in hominins could represent a conserved trait, whereas the specialized pedal grasping mechanics of extant apes may be more derived, in which case some traits often used to infer bipedal locomotion in early hominins may, instead, reflect a lower reliance on pedal grasping. Another possibility is that early hominins reverted from modern ape Mt4 morphology into a more plesiomorphic condition when terrestrial bipedality became a dominant behavior. More fossils dating around the Pan-Homo divergence time are necessary to test these competing hypotheses.


Subject(s)
Hominidae , Metatarsal Bones , Animals , Biological Evolution , Foot/anatomy & histology , Fossils , Metatarsal Bones/anatomy & histology
6.
J Hum Evol ; 158: 103048, 2021 09.
Article in English | MEDLINE | ID: mdl-34340120

ABSTRACT

Homo naledi fossils from the Rising Star cave system provide important insights into the diversity of hand morphology within the genus Homo. Notably, the pollical (thumb) metacarpal (Mc1) displays an unusual suite of characteristics including a median longitudinal crest, a narrow proximal base, and broad flaring intrinsic muscle flanges. The present study evaluates the affinities of H. naledi Mc1 morphology via 3D geometric morphometric analysis of shaft shape using a broader comparative sample (n = 337) of fossil hominins, recent humans, apes, and cercopithecoid monkeys than in prior work. Results confirm that the H. naledi Mc1 is distinctive from most other hominins in being narrow at the proximal end but surmounted by flaring muscle flanges distally. Only StW 418 (Australopithecus cf. africanus) is similar in these aspects of shape. The gracile proximal shaft is most similar to cercopithecoids, Pan, Pongo, Australopithecus afarensis, and Australopithecus sediba, suggesting that H. naledi retains the condition primitive for the genus Homo. In contrast, Neandertal Mc1s are characterized by wide proximal bases and shafts, pinched midshafts, and broad distal flanges, while those of recent humans generally have straight shafts, less robust muscle flanges, and wide proximal shafts/bases. Although uncertainties remain regarding character polarity, the morphology of the H. naledi thumb might be interpreted as a retained intermediate state in a transformation series between the overall gracility of the shaft and the robust shafts of later hominins. Such a model suggests that the addition of broad medial and lateral muscle flanges to a primitively slender shaft was the first modification in transforming the Mc1 into the overall more robust structure exhibited by other Homo taxa including Neandertals and recent Homo sapiens in whose shared lineage the bases and proximal shafts became expanded, possibly as an adaptation to the repeated recruitment of powerful intrinsic pollical muscles.


Subject(s)
Fossils , Hominidae/anatomy & histology , Metacarpal Bones/anatomy & histology , Animals , Biological Evolution , Caves , Haplorhini/anatomy & histology , Humans , Neanderthals/anatomy & histology
7.
Am J Phys Anthropol ; 176(3): 361-389, 2021 11.
Article in English | MEDLINE | ID: mdl-33931848

ABSTRACT

OBJECTIVES: The little known guenon Cercopithecus dryas has a controversial taxonomic history with some recognizing two taxa (C. dryas and C. salongo) instead of one. New adult specimens from the TL2 region of the central Congo Basin allow further assessment of C. dryas morphology and, along with CT scans of the juvenile holotype, provide ontogenetically stable comparisons across all C. dryas and "C. salongo" specimens for the first time. MATERIALS AND METHODS: The skins and skulls of two newly acquired C. dryas specimens, male YPM MAM 16890 and female YPM MAM 17066, were compared to previously described C. dryas and "C. salongo" specimens, along with a broader guenon comparative sample (cranial sample n = 146, dental sample n = 102). Qualitative and quantitative assessments were made on the basis of commonly noted pelage features as well as craniodental characters in the form of shape ratios and multivariate discriminant analyses. RESULTS: All C. dryas specimens, including the TL2 adults, are comparatively small in overall cranial size, have relatively small I1 s, and display tall molar cusps; these osteological characters, along with pelage features, are shared with known "C. salongo" specimens. Discriminant analyses of dental features separate C. dryas/salongo specimens from all other guenons. DISCUSSION: In addition to pelage-based evidence, direct osteological evidence suggests "C. salongo" is a junior synonym of C. dryas. Combined with molecular analyses suggesting C. dryas is most closely related to Chlorocebus spp., we emend the species diagnosis and support its transfer to Chlorocebus or possibly a new genus to reflect its distinctiveness.


Subject(s)
Cercopithecinae , Tooth , Animals , Congo , Female , Male , Phylogeny , Skull/diagnostic imaging , Tooth/diagnostic imaging
8.
Proc Biol Sci ; 287(1934): 20201655, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32900315

ABSTRACT

The fossil record of 'lesser apes' (i.e. hylobatids = gibbons and siamangs) is virtually non-existent before the latest Miocene of East Asia. However, molecular data strongly and consistently suggest that hylobatids should be present by approximately 20 Ma; thus, there are large temporal, geographical, and morphological gaps between early fossil apes in Africa and the earliest fossil hylobatids in China. Here, we describe a new approximately 12.5-13.8 Ma fossil ape from the Lower Siwaliks of Ramnagar, India, that fills in these long-standing gaps with implications for hylobatid origins. This ape represents the first new hominoid species discovered at Ramnagar in nearly a century, the first new Siwalik ape taxon in more than 30 years, and likely extends the hylobatid fossil record by approximately 5 Myr, providing a minimum age for hylobatid dispersal coeval to that of great apes. The presence of crown hylobatid molar features in the new species indicates an adaptive shift to a more frugivorous diet during the Middle Miocene, consistent with other proposed adaptations to frugivory (e.g. uricase gene silencing) during this time period as well.


Subject(s)
Biological Evolution , Fossils , Hylobatidae , Animals , India , Phylogeny , Primates
9.
J Wrist Surg ; 9(4): 283-288, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32760606

ABSTRACT

Background Treatment of scaphoid proximal pole (SPP) nonunion with a vascularized osteochondral graft from the medial femoral trochlea (MFT) has been described, with positive outcomes thus far. However, our understanding of the congruency between the articular surfaces of these structures is incomplete. Objective Our purpose was to evaluate the congruency of the MFT and SPP using a quantitative anatomical approach. Methods The distal femur and ipsilateral scaphoid were dissected from 12 cadavers and scanned with computerized tomography. Three-dimensional models were created and articular surfaces were digitally "dissected." The radius of curvature (RoC) of the radioulnar (RU) and proximodistal (PD) axes of the SPP and MFT, respectively, as well as the orthogonal axes (SPP, anteroposterior [AP]; MFT, mediolateral [ML]) were calculated. The RoC values were compared using the Wilcoxon signed-rank test. Results The RoC values for the SPP and MFT were not significantly different in the RU-PD plane ( p = 0.064). However, RoC values for the SPP and MFT were significantly different in the AP-ML plane ( p = 0.001). Conclusions For most individuals, the RU curvature of the SPP was similar to the PD curvature of the MFT. For nearly all individuals, the AP curvature of the SPP and the ML curvature of the MFT shared less congruence. Clinical Relevance Articular surface congruity may not be a critical factor associated with improvements in wrist function following this procedure.

10.
Proc Natl Acad Sci U S A ; 117(21): 11223-11225, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32393625

ABSTRACT

Arboreal primates such as chimpanzees exhibit pronounced curvature in their hand and foot phalanges, which is assumed to develop throughout life in response to mechanical loads produced by grasping and hanging from branches. Intriguingly, ancient fossil hominins also exhibit substantial phalangeal curvature, which, too, has been interpreted as a direct result of habitual arboreality during life. Here, we describe the phalangeal curvature of a chimpanzee who was raised during the 1930s in New York City to live much like a human, including by having very few opportunities to engage in arboreal activities. We show that the degree of hand and foot phalangeal curvature in this individual is indistinguishable from that of wild chimpanzees and distinct from humans. Thus, rather than being a direct effect of mechanical loads produced by lifetime arboreal activities, phalangeal curvature appears to be shaped largely by genetic factors. An important implication of this finding is that phalangeal curvature among fossil hominins is evidently best interpreted as a primitive trait inherited from an arboreal ancestral species rather than proof of engagement in arboreal activities during life.


Subject(s)
Finger Phalanges/anatomy & histology , Toe Phalanges/anatomy & histology , Animals , Female , Finger Phalanges/physiology , Fossils , Humans , Locomotion/physiology , Pan troglodytes/anatomy & histology , Pan troglodytes/physiology
11.
J Hum Evol ; 143: 102774, 2020 06.
Article in English | MEDLINE | ID: mdl-32325278

ABSTRACT

Functional comparisons of cortical bone strength properties between hominoid hallucal and pollical metapodials (Mt1 and Mc1, respectively) are lacking. Determining which of these two elements is stronger, and by how much, could be informative because the hallux and pollex are used differently both within and among extant hominoids during locomotion and manipulation (i.e., functional differentiation between autopod pairs). Here, we compare Mt1 and Mc1 midshaft cortical area, polar section modulus, and polar second moment of area, calculated from high-resolution computed tomography images in humans (n = 21), chimpanzees (n = 47), gorillas (n = 24), orangutans (n = 20), siamangs (n = 8), and gibbons (n = 21). Intraindividual comparisons between bones within species were made using paired t-tests. Log10-transformed Mt1:Mc1 ratios were created to assess relative strength asymmetry between bones, and interspecific comparisons of these proportions were made using analyses of variance. Absolute strength differences between the Mt1 and Mc1 for all variables were significantly larger in the Mt1 for all species (p < 0.05). Significant differences across species in Mt1:Mc1 proportions were also found, thereby demonstrating that strength asymmetry between bones differs among taxa (p < 0.05); asymmetry was lowest in orangutans, intermediate in gorillas, and greatest in humans, chimpanzees, siamangs, and gibbons. These findings support the hypothesis that the Mt1 is better adapted structurally than the Mc1 for bearing mechanical loads during weight support of locomotion in all extant hominoids and that pedal hallucal grasping likely engenders higher loads than manual pollical grasping in nonhuman hominoids. Thus, functional differentiation in autopod use within and among hominoids is reflected in hallucal and pollical metapodial strength properties.


Subject(s)
Hallux/physiology , Hominidae/physiology , Hylobatidae/physiology , Thumb/physiology , Animals , Biomechanical Phenomena , Female , Male , Shear Strength
12.
Am J Phys Anthropol ; 171(3): 430-438, 2020 03.
Article in English | MEDLINE | ID: mdl-31710709

ABSTRACT

OBJECTIVES: Small-bodied vertical clinging and leaping primates have elongated calcanei which enhance leap performance by optimizing leap velocity, distance, and acceleration, but at the expense of experiencing relatively large forces during takeoff and landing. This study tests the hypothesis that the elongated calcaneus of leaping galagids is adapted to resist larger and more stereotyped bending loads compared to more quadrupedal galagids. MATERIALS AND METHODS: The calcanei of 14 individuals of Otolemur and 14 individuals of Galago (three species of each genus) were µCT scanned. Calcaneal cross-sectional properties (maximum and minimum second moments of area and polar section modulus) were obtained from a slice representing the 50% position of bone segment length and dimensionless ratios were created for each variable using calcaneal cuboid facet area as a proxy for body mass. RESULTS: There were no significant differences in size-adjusted bending strength between Galago and Otolemur. Galago exhibited more elliptically shaped calcaneal cross sections, however, suggesting that its calcanei are more adapted to stereotyped loading regimes than those of Otolemur. DISCUSSION: The results suggest that the calcaneus of specialized leapers is adapted to more stereotyped loading patterns. The lack of predicted bone strength differences between Galago and Otolemur may be related to body size differences between these taxa, or it may indicate that loads encountered by Galago during naturalistic leaping are not reflected in the available experimental force data.


Subject(s)
Calcaneus/growth & development , Cortical Bone/physiology , Galagidae/physiology , Adaptation, Biological , Animals , Biomechanical Phenomena , Female , Galago/physiology , Male , Species Specificity
13.
J Anat ; 235(5): 873-882, 2019 11.
Article in English | MEDLINE | ID: mdl-31373387

ABSTRACT

The human clavicle (i.e. collarbone) is an unusual long bone due to its signature S-shaped curve and variability in macrostructure observed between individuals. Because of the complex nature of how the upper limb moves, as well as due to its complex musculoskeletal arrangement, the biomechanics, in particular the mechanical loadings, of the clavicle are not fully understood. Given that bone remodeling can be influenced by bone stress, the histologic organization of Haversian bone offers a hypothesis of responses to force distributions experienced across a bone. Furthermore, circularly polarized light microscopy can be used to determine the orientation of collagen fibers, providing additional information on how bone matrix might organize to adapt to direction of external loads. We examined Haversian density and collagen fiber orientation, along with cross-sectional geometry, to test whether the clavicle midshaft shows unique adaptation to atypical load-bearing when compared with the sternal (medial) and acromial (lateral) shaft regions. Because fractures are most common at the midshaft, we predicted that the cortical bone structure would show both disparities in Haversian remodeling and nonrandomly oriented collagen fibers in the midshaft compared with the sternal and acromial regions. Human clavicles (n = 16) were sampled via thin-sections at the sternal, middle, and acromial ends of the shaft, and paired sample t-tests were employed to evaluate within-individual differences in microstructural or geometric properties. We found that Haversian remodeling is slightly but significantly reduced in the middle of the bone. Analysis of collagen fiber orientation indicated nonrandom fiber orientations that are overbuilt for tensile loads or torsion but are poorly optimized for compressive loads throughout the clavicle. Geometric properties of percent bone area, polar second moment of area, and shape (Imax /Imin ) confirmed the conclusions drawn by existing research on clavicle macrostructure. Our results highlight that mediolateral shape changes might be accompanied by slight changes in Haversian density, but bone matrix organization is predominantly adapted to resisting tensile strains or torsion throughout and may be a major factor in the risk of fracture when experiencing atypical compression.


Subject(s)
Clavicle/anatomy & histology , Cortical Bone/anatomy & histology , Weight-Bearing/physiology , Bone Remodeling/physiology , Clavicle/physiology , Cortical Bone/physiology , Humans , Stress, Mechanical
14.
J Hand Surg Am ; 44(2): 121-128, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30017649

ABSTRACT

PURPOSE: Hemi-hamate arthroplasty has been described as a viable treatment option for unstable proximal interphalangeal joint fracture-dislocations. The procedure uses a dorsal distal hamate osteochondral graft to recreate the injured volar middle phalanx (MP) proximal base. The purpose of this study was to evaluate the similarity in shape of these articular surfaces using quantitative 3-dimensional methods. METHODS: Three-dimensional virtual renderings were created from laser scans of the articular surfaces of the dorsal distal hamate and the volar MP bases of the index, middle, ring, and little fingers from cadaveric hands of 25 individuals. Three-dimensional landmarks were obtained from the articular surfaces of each bone and subjected to established geometric morphometric analytical approaches to quantify shape. For each individual, bone shapes were evaluated for covariation using 2-block partial least-squares and principal component analyses. RESULTS: No statistically significant covariation was found between the dorsal distal hamate and volar MP bases of the middle, ring, or little digits. Whereas the volar MP bases demonstrated relative morphologic uniformity among the 4 digits both within and between individuals, the dorsal distal hamates exhibited notable variation in articular surface morphology. CONCLUSIONS: Despite the early to midterm clinical success of hemi-hamate arthroplasty, there is no statistically significant, uniform similarity in shape between the articular surfaces of the dorsal distal hamate and the volar MP base. In addition, there is wide variation in the articular morphology of the hamate among individuals. CLINICAL RELEVANCE: The lack of uniform similarity in shape between the dorsal distal hamate and the volar MP base may result in unpredictable outcomes in HHA. It is recommended that the variation in hamate morphology be considered while reconstructing the injured volar MP base in the procedure.


Subject(s)
Finger Phalanges/anatomy & histology , Finger Phalanges/diagnostic imaging , Hamate Bone/anatomy & histology , Hamate Bone/diagnostic imaging , Imaging, Three-Dimensional , Anatomic Landmarks , Cadaver , Female , Humans , Lasers , Least-Squares Analysis , Male , Principal Component Analysis
15.
Proc Natl Acad Sci U S A ; 115(35): 8746-8751, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30104373

ABSTRACT

The primate foot functions as a grasping organ. As such, its bones, soft tissues, and joints evolved to maximize power and stability in a variety of grasping configurations. Humans are the obvious exception to this primate pattern, with feet that evolved to support the unique biomechanical demands of bipedal locomotion. Of key functional importance to bipedalism is the morphology of the joints at the forefoot, known as the metatarsophalangeal joints (MTPJs), but a comprehensive analysis of hominin MTPJ morphology is currently lacking. Here we present the results of a multivariate shape and Bayesian phylogenetic comparative analyses of metatarsals (MTs) from a broad selection of anthropoid primates (including fossil apes and stem catarrhines) and most of the early hominin pedal fossil record, including the oldest hominin for which good pedal remains exist, Ardipithecus ramidus Results corroborate the importance of specific bony morphologies such as dorsal MT head expansion and "doming" to the evolution of terrestrial bipedalism in hominins. Further, our evolutionary models reveal that the MT1 of Ar. ramidus shifts away from the reconstructed optimum of our last common ancestor with apes, but not necessarily in the direction of modern humans. However, the lateral rays of Ar. ramidus are transformed in a more human-like direction, suggesting that they were the digits first recruited by hominins into the primary role of terrestrial propulsion. This pattern of evolutionary change is seen consistently throughout the evolution of the foot, highlighting the mosaic nature of pedal evolution and the emergence of a derived, modern hallux relatively late in human evolution.


Subject(s)
Biological Evolution , Hominidae , Metatarsal Bones , Phylogeny , Animals , Hominidae/anatomy & histology , Hominidae/physiology , Metatarsal Bones/anatomy & histology , Metatarsal Bones/physiology
16.
J Anat ; 233(2): 193-203, 2018 08.
Article in English | MEDLINE | ID: mdl-29851089

ABSTRACT

Bone modeling and remodeling are aerobic processes that entail relatively high oxygen demands. Long bones receive oxygenated blood from nutrient arteries, epiphyseal-metaphyseal arteries, and periosteal arteries, with the nutrient artery supplying the bulk of total blood volume in mammals (~ 50-70%). Estimates of blood flow into these bones can be made from the dimensions of the nutrient canal, through which nutrient arteries pass. Unfortunately, measuring these canal dimensions non-invasively (i.e. without physical sectioning) is difficult, and thus researchers have relied on more readily visible skeletal proxies. Specifically, the size of the nutrient artery has been estimated from dimensions (e.g. minimum diameters) of the periosteal (external) opening of the nutrient canal. This approach has also been utilized by some comparative morphologists and paleontologists, as the opening of a nutrient canal is present long after the vascular soft tissue has degenerated. The literature on nutrient arteries and canals is sparse, with most studies consisting of anatomical descriptions from surgical proceedings, and only a few investigating the links between nutrient canal morphology and physiology or behavior. The primary objective of this study was to evaluate femur nutrient canal morphology in mice with known physiological and behavioral differences; specifically, mice from an artificial selection experiment for high voluntary wheel-running behavior. Mice from four replicate high runner (HR) lines are known to differ from four non-selected control (C) lines in both locomotor and metabolic activity, with HR mice having increased voluntary wheel-running behavior and maximal aerobic capacity (VO2 max) during forced treadmill exercise. Femora from adult mice (average age 7.5 months) of the 11th generation of this selection experiment were µCT-scanned and three-dimensional virtual reconstructions of nutrient canals were measured for minimum cross-sectional area as a skeletal proxy of blood flow. Gross observations revealed that nutrient canals varied far more in number and shape than prior descriptions would indicate, regardless of sex or genetic background (i.e. HR vs. C lines). Canals adopted non-linear shapes and paths as they traversed from the periosteal to endosteal borders through the cortex, occasionally even branching within the cortical bone. Additionally, mice from both HR and C lines averaged more than four nutrient canals per femur, in contrast to the one to two nutrient canals described for femora from rats, pigs, and humans in prior literature. Mice from HR lines had significantly larger total nutrient canal area than C lines, which was the result not of an increase in the number of nutrient canals, but rather an increase in their average cross-section size. This study demonstrates that mice with an evolutionary history of increased locomotor activity and maximal aerobic metabolic rate have a concomitant increase in the size of their femoral nutrient canals. Although the primary determinant of nutrient canal size is currently not well understood, the present results bolster use of nutrient canal size as a skeletal indicator of aerobically supported levels of physical activity in comparative studies.


Subject(s)
Femur/anatomy & histology , Haversian System/anatomy & histology , Motor Activity/genetics , Selective Breeding , Animals , Female , Male , Mice , Phenotype , Sex Factors
17.
J Hum Evol ; 121: 147-165, 2018 08.
Article in English | MEDLINE | ID: mdl-29764690

ABSTRACT

When measured as a ratio of mean midshaft diameter to bone length, the OH 8 fossil hominin foot exhibits a metatarsal (Mt) robusticity pattern of 1 > 5 > 3 > 4 > 2, which differs from the widely perceived "common" modern human pattern (1 > 5 > 4 > 3 > 2); African apes generally exhibit a third pattern (1 > 2 > 3 > 4 > 5). Largely because of the relative ranking of Mt2 and Mt5, OH 8 metatarsals structurally resemble the pattern exhibited by bipedal humans more than the pattern of quadrupedal and climbing African apes. Considering only these three phenotypes, however, discounts the potentially important functional implications of variation in modern human (and African ape) metatarsal robusticity patterns, suggesting that they are not useful for interpreting the specific biomechanics of a bipedal gait in fossils (i.e., whether it was modern human-like or not). Using computed tomography scans to quantify metatarsal midshaft cross-sectional geometry in a large sample of Homo (n=130), Gorilla (n=44) and Pan (n=80), we documented greater variation in metatarsal robusticity patterns than previously recognized in all three groups. While apes consistently show a 1 > 2 > 3 > 4 > 5 pattern in our larger sample, there does not appear to be a similarly precise single "common" human pattern. Rather, human metatarsals converge towards a 1 > 4/5 > 2/3 pattern, where metatarsals 4 and 5, and metatarsals 2 and 3, often "flip" positions relative to each other depending on the variable examined. After reassessing what a "common" human pattern could be based on a larger sample, the previously described OH 8 pattern of 1 > 5 > 3 > 4 > 2 is only observed in some humans (<6%) and almost never in apes (<0.5%). Although this suggests an overall greater similarity to (some) humans than to any ape in loading of the foot, the relatively rare frequency of these humans in our sample underscores potential differences in loading experienced by the medial and lateral columns of the OH 8 foot compared to modern humans.


Subject(s)
Foot/physiology , Hominidae/physiology , Metatarsal Bones/physiology , Walking , Animals , Biomechanical Phenomena , Female , Humans , Male , Tanzania
18.
Anat Rec (Hoboken) ; 301(5): 776-785, 2018 05.
Article in English | MEDLINE | ID: mdl-29281860

ABSTRACT

Regions of denser subchondral bone deep to a joint's articular surface indicate locations where the joint experiences relatively higher or more frequent compressive trans-articular forces than less dense regions. Human clinically focused studies have hypothesized that regional variation of acquired with computed tomography osteoabsorptiomety (CT-OAM), in the scapular glenoid fossa (GF) is specifically related to forces arising from everyday rotator cuff muscle function. We test this hypothesis by investigating the relationship between rotator cuff function and GF HiRD subchondral bone patterns in a broader comparative context. CT-OAM was used on scapulae of chimpanzees, gibbons and humans to visualize HiRD subchondral bone patterns and assess regional (anterior-posterior; superior-inferior) differences in HiRD concentrations within each group. Like patterns observed in humans, ape GFs show HiRD concentrations in anterior, posterior and superior regions. Gibbons exhibit significantly larger concentrations anteriorly, probably serving as a skeletal correlate of increased subscapularis activity during humeral internal rotation during arm-swinging locomotion. Chimpanzees exhibit relatively larger areas posteriorly (though not statistically significant), conceivably serving as a correlate of increased infraspinatus activity during humeral external rotation and retraction during knuckle-walking. All groups show relatively larger HiRD areas superiorly, likely correlating with forceful humeral abduction (rather than adduction) during routine upper limb use across behaviors. Subchondral bone HiRD patterns in the GF appear to correspond with normal and unbalanced rotator cuff activity and force production not only in humans, but also in other primates, thereby corroborating their value in human clinical studies and functional morphology research. Anat Rec, 301:776-785, 2018. © 2017 Wiley Periodicals, Inc.


Subject(s)
Bone Density/physiology , Glenoid Cavity/diagnostic imaging , Scapula/diagnostic imaging , Animals , Humans , Hylobates , Pan troglodytes , Tomography, X-Ray Computed/methods
19.
J Anat ; 232(1): 39-53, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29098692

ABSTRACT

Life history variables including the timing of locomotor independence, along with changes in preferred locomotor behaviors and substrate use during development, influence how primates use their feet throughout ontogeny. Changes in foot function during development, in particular the nature of how the hallux is used in grasping, can lead to different structural changes in foot bones. To test this hypothesis, metatarsal midshaft rigidity [estimated from the polar second moment of area (J) scaled to bone length] and cross-sectional shape (calculated from the ratio of maximum and minimum second moments of area, Imax /Imin ) were examined in a cross-sectional ontogenetic sample of rhesus macaques (Macaca mulatta; n = 73) and common chimpanzees (Pan troglodytes; n = 79). Results show the hallucal metatarsal (Mt1) is relatively more rigid (with higher scaled J-values) in younger chimpanzees and macaques, with significant decreases in relative rigidity in both taxa until the age of achieving locomotor independence. Within each age group, Mt1 rigidity is always significantly higher in chimpanzees than macaques. When compared with the lateral metatarsals (Mt2-5), the Mt1 is relatively more rigid in both taxa and across all ages; however, this difference is significantly greater in chimpanzees. Length and J scale with negative allometry in all metatarsals and in both species (except the Mt2 of chimpanzees, which scales with positive allometry). Only in macaques does Mt1 midshaft shape significantly change across ontogeny, with older individuals having more elliptical cross-sections. Different patterns of development in metatarsal diaphyseal rigidity and shape likely reflect the different ways in which the foot, and in particular the hallux, functions across ontogeny in apes and monkeys.


Subject(s)
Macaca mulatta/anatomy & histology , Metatarsal Bones/anatomy & histology , Pan troglodytes/anatomy & histology , Animals , Cross-Sectional Studies , Hallux , Species Specificity
20.
J Hum Evol ; 108: 176-198, 2017 07.
Article in English | MEDLINE | ID: mdl-28622929

ABSTRACT

Songhor is an early Miocene fossil locality in Kenya known for its diverse primate assemblage that includes catarrhine species belonging to the genera Kalepithecus, Limnopithecus, Dendropithecus, Rangwapithecus, and Proconsul. Expeditions to Songhor since the 1930s have recovered unassociated catarrhine postcranial remains from both the fore- and hindlimbs, including multiple elements from the feet. In this study, we describe KNM-SO 31233, a complete left hallucal metatarsal (Mt1), along with several other fragmentary Mt1 specimens (KNM-SO 1080, 5129, 5141, 22235). These fossils were compared to extant catarrhines and platyrrhines, as well as available fossil Miocene catarrhine Mt1s. Morphometric data were obtained from 3D surface renderings and subjected to a number of analyses to assess their phenetic affinity with the comparative sample, make predictions of body mass, and to infer their functional morphology. The size and shape of the Songhor Mt1s are diverse, exhibiting a large robust morph (KNM-SO 5141) similar in size but not in shape to extant African apes, medium-sized morphs (KNM-SO 1080, 5129 and 22235), and a smaller, slender one (KNM-SO 31233) that has a shape resembling arboreal quadrupedal leaping monkeys and suspensory atelines and hylobatids. KNM-SO 31233 is unlike other known fossil Mt1s, and in general, none of the Songhor Mt1s resembled any single extant anthropoid clade or species. The morpho-functional diversity of Songhor Mt1s is consistent with an extensive morphological and phylogenetic catarrhine diversity in the early part of the Miocene epoch.


Subject(s)
Catarrhini/anatomy & histology , Fossils/anatomy & histology , Metatarsal Bones/anatomy & histology , Animals , Hominidae/anatomy & histology , Kenya , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...