Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 37(9): e23133, 2023 09.
Article in English | MEDLINE | ID: mdl-37566478

ABSTRACT

Pathways leading to osteoarthritis (OA) are diverse depending on the risk factors involved; thus, developing OA therapeutics has been challenging. Here we report that nuclear protein-1 (Nupr1), a stress-inducible protein/transcription factor, is activated by pathways associated with obesity and aging in chondrocytes. Treatment of human chondrocytes with free fatty acids (palmitate and oleate; a model for high-fat diet/obesity) induced PERK signaling and increased expression of caspase-3, TRB3, and Nupr1. On the other hand, treatment of chondrocytes with menadione (oxidative stress inducer) induced oxidation of IRE1, activated antioxidant response (higher Nrf2 expression), and increased expression of Nupr1 and matrix metalloproteinases. Experimental OA was induced by destabilization of the medial meniscus (DMM) in the knee joints of Nupr1+/+ and Nupr1-/- mice. Loss of Nupr1 expression reduced the severity of cartilage lesions in this model. Together, our findings suggest that Nupr1 is a common factor activated by signaling pathways activated by obesity (ER stress) and age (oxidative stress) and a potential drug target for OA resulting from various risk factors.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Humans , Mice , Aging , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Nuclear Proteins/metabolism , Obesity/metabolism , Osteoarthritis/metabolism
2.
Molecules ; 26(8)2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33918705

ABSTRACT

Bone metastasis remains a major cause of death in cancer patients, and current therapies for bone metastatic disease are mainly palliative. Bone metastases arise after cancer cells have colonized the bone and co-opted the normal bone remodeling process. In addition to bone-targeted therapies (e.g., bisphosphonate and denosumab), hormone therapy, chemotherapy, external beam radiation therapy, and surgical intervention, attempts have been made to use systemic radiotherapy as a means of delivering cytocidal radiation to every bone metastatic lesion. Initially, several bone-seeking beta-minus-particle-emitting radiopharmaceuticals were incorporated into the treatment for bone metastases, but they failed to extend the overall survival in patients. However, recent clinical trials indicate that radium-223 dichloride (223RaCl2), an alpha-particle-emitting radiopharmaceutical, improves the overall survival of prostate cancer patients with bone metastases. This success has renewed interest in targeted alpha-particle therapy development for visceral and bone metastasis. This review will discuss (i) the biology of bone metastasis, especially focusing on the vicious cycle of bone metastasis, (ii) how bone remodeling has been exploited to administer systemic radiotherapies, and (iii) targeted radiotherapy development and progress in the development of targeted alpha-particle therapy for the treatment of prostate cancer bone metastasis.


Subject(s)
Alpha Particles/therapeutic use , Bone Neoplasms/secondary , Prostatic Neoplasms/drug therapy , Radiopharmaceuticals/therapeutic use , Humans , Ligands , Male , Prostate-Specific Antigen/metabolism , Radiopharmaceuticals/chemistry
3.
Biochem Pharmacol ; 188: 114520, 2021 06.
Article in English | MEDLINE | ID: mdl-33741328

ABSTRACT

Abnormal outgrowth of sensory nerves is one of the important contributors to pain associated with cancer and its treatments. Primary neuronal cultures derived from dorsal root ganglia (DRG) have been widely used to study pain-associated signal transduction and electrical activity of sensory nerves. However, there are only a few studies using primary DRG neuronal culture to investigate neurite outgrowth alterations due to underlying cancer-related factors and chemotherapeutic agents. In this study, primary DRG sensory neurons derived from mouse, non-human primate, and human were established in serum and growth factor-free conditions. A bovine serum albumin gradient centrifugation method improved the separation of sensory neurons from satellite cells. The purified DRG neurons were able to maintain their heterogeneous subpopulations, and displayed an increase in neurite growth when exposed to cancer-derived conditioned medium, while they showed a reduction in neurite length when treated with a neurotoxic chemotherapeutic agent. Additionally, a semi-automated quantification method was developed to measure neurite length in an accurate and time-efficient manner. Finally, these exogenous factors altered the gene expression patterns of murine primary sensory neurons, which are related to nerve growth, and neuro-inflammatory pain and nociceptor development. Together, the primary DRG neuronal culture in combination with a semi-automated quantification method can be a useful tool for further understanding the impact of exogenous factors on the growth of sensory nerve fibers and gene expression changes in sensory neurons.


Subject(s)
Cancer Pain/physiopathology , Neuronal Outgrowth/physiology , Sensory Receptor Cells/physiology , A549 Cells , Adult , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Cancer Pain/drug therapy , Cancer Pain/etiology , Carcinoma, Lewis Lung/complications , Carcinoma, Lewis Lung/drug therapy , Carcinoma, Lewis Lung/physiopathology , Cells, Cultured , Female , Humans , Macaca mulatta , Male , Mice , Mice, Inbred C57BL , Neuronal Outgrowth/drug effects , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Sensory Receptor Cells/drug effects
4.
J Bone Oncol ; 26: 100346, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33425674

ABSTRACT

Prostate cancer (PCa) metastasizes to bone, where the bone marrow microenvironment controls disease progression. However, the cellular interactions that result in active bone marrow metastases are poorly understood. A better understanding of these interactions is critical to success in the pursuit of effective treatments for this life ending disease. Anecdotally, we observe that after intracardiac injection of PCa cells, one of the greatest tools to investigate the mechanisms of bone-metastatic disease, animals frequently present with mandible metastasis before hind limb metastasis. Therefore, in this study, we investigated whether the bone cells derived from the mouse mandible influence PCa progression differently than those from the hind limb. Interestingly, we found that osteoblasts harvested from mouse mandibles grew faster, expressed more vascular endothelial growth factor (VEGF), increased vascularity and formed more bone, and stimulated faster growth of PCa cells when cultured together than osteoblasts harvested from mouse hind limbs. Additionally, these findings were confirmed in vivo when mouse mandible osteoblasts were co-implanted into mice with PCa cells. Importantly, the enhancement of PCa growth mediated by mandible osteoblasts was not shown to be due to their differentiation or proliferation activities, but may be partly due to increased vascularization and expression of VEGF.

SELECTION OF CITATIONS
SEARCH DETAIL