Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
Plant Physiol Biochem ; 210: 108590, 2024 May.
Article in English | MEDLINE | ID: mdl-38574692

ABSTRACT

The essential oil of Pelargonium graveolens (rose-scented geranium), an important aromatic plant, comprising mainly mono- and sesqui-terpenes, has applications in food and cosmetic industries. This study reports the characterization of isoprenyl disphosphate synthases (IDSs) involved in P. graveolens terpene biosynthesis. The six identified PgIDSs belonged to different classes of IDSs, comprising homomeric geranyl diphosphate synthases (GPPSs; PgGPPS1 and PgGPPS2), the large subunit of heteromeric GPPS or geranylgeranyl diphosphate synthases (GGPPSs; PgGGPPS), the small subunit of heteromeric GPPS (PgGPPS.SSUI and PgGPPS.SSUII), and farnesyl diphosphate synthases (FPPS; PgFPPS).All IDSs exhibited maximal expression in glandular trichomes (GTs), the site of aroma formation, and their expression except PgGPPS.SSUII was induced upon treatment with MeJA. Functional characterization of recombinant proteins revealed that PgGPPS1, PgGGPPS and PgFPPS were active enzymes producing GPP, GGPP/GPP, and FPP respectively, whereas both PgGPPS.SSUs and PgGPPS2 were inactive. Co-expression of PgGGPPS (that exhibited bifunctional G(G)PPS activity) with PgGPPS.SSUs in bacterial expression system showed lack of interaction between the two proteins, however, PgGGPPS interacted with a phylogenetically distant Antirrhinum majus GPPS.SSU. Further, transient expression of AmGPPS.SSU in P. graveolens leaf led to a significant increase in monoterpene levels. These findings provide insight into the types of IDSs and their role in providing precursors for different terpenoid components of P. graveolens essential oil.


Subject(s)
Pelargonium , Plant Proteins , Terpenes , Terpenes/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Pelargonium/metabolism , Pelargonium/genetics , Alkyl and Aryl Transferases/metabolism , Alkyl and Aryl Transferases/genetics , Gene Expression Regulation, Plant , Phylogeny , Trichomes/metabolism , Oils, Volatile/metabolism
2.
ACS Omega ; 9(6): 7188-7205, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38371771

ABSTRACT

Background: Inorganic biomaterials are biologically active and are used as implants and drug delivery system. They have therapeutically active elements present in their framework that are released in the physiological milieu. Release of these dopants above the supraphysiological limit may produce adverse effects and physicochemical interactions with the loaded drugs. Therefore, this necessitates evaluating the in vivo release kinetics, biodistribution, and excretion profiles of dopants from barium-doped bioglass (BaBG) that has potential anti-inflammatory, antiulcer, and regenerative properties. Methods: In vitro leaching of Ca, Si, and Ba from BaBG was analyzed in simulated body fluid. Release kinetics post single-dose oral administration (1, 5, and 10 mg/kg) was performed in rats. Blood was collected at different time points, and pharmacokinetic parameters of released elements were calculated. The routes of excretion and biodistribution in major organs were evaluated using ICP-MS. Results: Elements were released after the oral administration of BaBG into the plasma. They showed dose-dependent release kinetics and mean residence time. Cmax was observed at 24 h for all elements, followed by a downhill fall. There was also a dose-dependent increase in the volume of distribution, and the clearance of dopants was mostly through feces. Ba and Si were biodistributed significantly in the liver, spleen, and kidneys. However, by the end of day 7, there was a leveling-off effect observed for all elements. Conclusion: All of the dopants exhibited a dose-dependent increase in release kinetics and biodistribution in vital organs. This study will help in dose optimization and understanding of various physicochemical and pharmacokinetic interactions when BaBG is used for future pharmacological studies.

3.
Mol Neurobiol ; 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38064103

ABSTRACT

Iron is widely linked with the onset and development of Parkinson's disease (PD). Accumulation of iron induces free radical generation and promotes α-synuclein aggregation, oxidative stress, and autophagy impairment. Deferoxamine, an iron chelator, is shown to ameliorate iron dyshomeostasis in rodents and humans. However, the role of deferoxamine in cypermethrin-induced iron accumulation is not yet known. Although an iron accumulation and impaired chaperone-mediated autophagy (CMA) contribute to PD, a link between the two is not yet widely understood. Current study is undertaken to explore the possible association between an iron accumulation and CMA in cypermethrin model of PD in the presence of deferoxamine. Level of iron, iron transporter proteins, oxidative stress, and CMA proteins along with indicators of Parkinsonism were measured. Deferoxamine attenuated cypermethrin-induced iron accumulation and number of iron-positive cells and ameliorated the demise of dopaminergic cells and dopamine content. Deferoxamine significantly normalizes cypermethrin-induced changes in iron transporter proteins, α-synuclein, lysosome-associated membrane protein-2A, and oxidative stress. The results demonstrate that deferoxamine ameliorates cypermethrin-induced iron dyshomeostasis and impairment in CMA.

4.
J Biol Chem ; 299(11): 105349, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37838179

ABSTRACT

Chloride intracellular channels (CLICs) are a family of proteins that exist in soluble and transmembrane forms. The newest discovered member of the family CLIC6 is implicated in breast, ovarian, lung gastric, and pancreatic cancers and is also known to interact with dopamine-(D(2)-like) receptors. The soluble structure of the channel has been resolved, but the exact physiological role of CLIC6, biophysical characterization, and the membrane structure remain unknown. Here, we aimed to characterize the biophysical properties of this channel using a patch-clamp approach. To determine the biophysical properties of CLIC6, we expressed CLIC6 in HEK-293 cells. On ectopic expression, CLIC6 localizes to the plasma membrane of HEK-293 cells. We established the biophysical properties of CLIC6 by using electrophysiological approaches. Using various anions and potassium (K+) solutions, we determined that CLIC6 is more permeable to chloride-(Cl-) as compared to bromide-(Br-), fluoride-(F-), and K+ ions. In the whole-cell configuration, the CLIC6 currents were inhibited after the addition of 10 µM of IAA-94 (CLIC-specific blocker). CLIC6 was also found to be regulated by pH and redox potential. We demonstrate that the histidine residue at 648 (H648) in the C terminus and cysteine residue in the N terminus (C487) are directly involved in the pH-induced conformational change and redox regulation of CLIC6, respectively. Using qRT-PCR, we identified that CLIC6 is most abundant in the lung and brain, and we recorded the CLIC6 current in mouse lung epithelial cells. Overall, we have determined the biophysical properties of CLIC6 and established it as a Cl- channel.


Subject(s)
Chloride Channels , Chlorides , Animals , Humans , Mice , Anions/metabolism , Chloride Channels/genetics , Chloride Channels/metabolism , Chlorides/metabolism , Epithelial Cells/metabolism , HEK293 Cells
5.
Article in English | MEDLINE | ID: mdl-37586579

ABSTRACT

Cadmium (Cd) exposure to the animals including humans is reported as nephrotoxic compounds i.e., disturbing redox status (increase oxidative stress), mitochondrial dysfunction, renal cell death and altered transporters in the renal system. Hsp27 (a small heat shock protein) has been shown as one of the modulators in the renal dysfunction and increased against the Cd induced toxicity. However, no studies are reported on the genetic modulation of stress protein against the Cd-induced nephrotoxicity. The current study aimed to examine the protective role of hsp27 overexpression against the Cd-induced nephrotoxicity using Drosophila melanogaster as an animal model. D. melanogaster renal system includes nephrocytes and Malpighian tubules (MTs) that show the functional similarity with mammalian kidney nephron. Overexpression of the hsp27 was found to reduce the Cd induced oxidative stress, rescue cell death in MTs of Cd exposed D. melanogaster larvae. The rescued GSH level, NADPH level and glucose 6 phosphate dehydrogenase (G6PD) activity were also observed in the MTs of the Cd exposed organism. Function (efflux activity and fluid secretion rate) of the MTs was restored in Cd exposed hsp27 overexpressed larvae. Further, results were confirmed by restored brush border microvilli density and reduced uric acid level. Tissue specific knockdown of hsp27 developed Cd like phenotypes in MTs and the phenotypes enhanced in Cd exposed condition. The present study clearly shows the role of hsp27 overexpression in restoration of the MTs function and protection against the Cd induced renal toxicity.


Subject(s)
Cadmium , Drosophila melanogaster , Humans , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Cadmium/toxicity , Cadmium/metabolism , Kidney/metabolism , Oxidative Stress , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Mammals/metabolism
6.
Mol Neurobiol ; 60(10): 5838-5852, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37351784

ABSTRACT

The etiology of Parkinson's disease (PD) is highly complex and is still indefinable. However, a number of studies have indicated the involvement of pesticides and transition metals. Copper, magnesium, iron, and zinc have emerged as important metal contributors. Exposure to pesticides causes an accumulation of transition metals in the substantia nigra (SN) region of the brain. The cypermethrin model of PD is characterized by mitochondrial dysfunction, autophagy impairment, oxidative stress, etc. However, the effect of cypermethrin on metal homeostasis is not yet explored. The study was designed to delineate the role of metals and their transporter proteins in cypermethrin-induced animal and cellular models of PD. The level of copper, magnesium, iron, and zinc was checked in the nigrostriatal tissue and serum by atomic absorption spectroscopy. Since cypermethrin consistently increased iron content in the nigrostriatal tissue and serum after 12 weeks of exposure, the level of iron transporter proteins, such as divalent metal transporter-1 (DMT-1), ceruloplasmin, transferrin, ferroportin, and hepcidin, and their in silico interaction with cypermethrin were checked. 3,3'-Diaminobenzidine-enhanced Perl's staining showed an elevated number of iron-positive cells in the SN of cypermethrin-treated rats. Molecular docking studies revealed a strong binding affinity between cypermethrin and iron transporter protein receptors of humans and rats. Furthermore, cypermethrin increased the expression of DMT-1 and hepcidin while reducing the expression of transferrin, ceruloplasmin, and ferroportin in the nigrostriatal tissue and human neuroblastoma cells. These observations suggest that cypermethrin alters the expression of iron transporter proteins leading to iron dyshomeostasis, which could contribute to dopaminergic neurotoxicity.


Subject(s)
Parkinson Disease , Pesticides , Rats , Humans , Animals , Iron/metabolism , Parkinson Disease/metabolism , Hepcidins/metabolism , Copper/metabolism , Ceruloplasmin , Magnesium/pharmacology , Molecular Docking Simulation , Substantia Nigra/metabolism , Transferrin/metabolism , Zinc/metabolism
7.
Chemosphere ; 337: 139264, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37348617

ABSTRACT

Pollution from the oil industries and refineries has worsened various environmental compartments. In this study, indigenous oil degrading bacteria were isolated from crude oil obtained from an Oil and Natural Gas Corporation (ONGC) asset in Ankleshwar, Gujarat, India. Based on 16S rRNA phylogeny, they were identified as Pseudomonas boreopolis IITR108, Microbacterium schleiferi IITR109, Pseudomonas aeruginosa IITR110, and Bacillus velezensis IITR111. The strain IITR108, IITR109, IITR110, and IITR111 showed 80-89% and 71-78% degradation of aliphatic (C8-C40) and aromatic (4-5 ring) hydrocarbons respectively in 45 d when supplemented with 3% (v/v) waste crude oil. When compared to individual bacteria, the consortium degrades 93.2% of aliphatic hydrocarbons and 85.5% of polyaromatic hydrocarbons. It was observed that the total aliphatic and aromatic content of crude oil 394,470 µg/mL and 47,050 µg/mL was reduced up to 9617.75 µg/mL and 4586 µg/mL respectively in 45 d when consortium was employed. The rate kinetics analysis revealed that the biodegradation isotherm followed first order kinetics, with a linear correlation between concentration (hydrocarbons) and time intervals. The half-life of aliphatic (C8-C40) and aromatic hydrocarbons ranged from 200 to 453 h and 459-714 h respectively. All the bacteria efficiently produced catabolic enzymes such as alkane monooxygenase, alcohol dehydrogenase, and lipase during the degradation of crude oil. These findings indicated that the bacterial consortium can be a better candidate for bioremediation and reclamation of aliphatic and aromatics hydrocarbon contaminated sites.


Subject(s)
Hydrocarbons, Aromatic , Petroleum , Soil Pollutants , Petroleum/analysis , Kinetics , Half-Life , Soil , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Hydrocarbons, Aromatic/analysis , Hydrocarbons/metabolism , Bacteria/metabolism , Biodegradation, Environmental , Soil Pollutants/analysis
8.
Talanta ; 260: 124572, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37121139

ABSTRACT

Benzodiazepines can make victims more docile, they are frequently used in drug-facilitated crimes, such as robberies and sexual assaults. Therefore, it is essential to develop techniques for determining whether these chemicals are present in relation with illegal activity is crucial. Therefore, to determine the presence of five benzodiazepines (alprazolam, clonazepam, diazepam, lorazepam, and oxazepam) in water, alcoholic beverages, and non-alcoholic beverages, a simple and direct, miniaturized, and effective vortex assisted ultrasound based microextraction using solidification of floating organic droplets (VAUS-ME-SFO) in combination with LC-MS/MS was developed. 1-Undecanol and acetonitrile, respectively, served as the extractant and disperser solvents. Many other parameters affect the efficiency of the developed analytical procedure VAUS-ME-SFO/LC-MS/MS. These parameters were optimized using Plackett Burman Design and Central Composite Design to obtain reliable results. The optimum conditions for the extraction were: 10.0 mL of sample; 180 µL acetonitrile, as a dispersive solvent; 200 µL of 1-undecanol, as an extraction solvent; pH 7; 105 s of vortex agitation; 120 s of ultrasonication application and 3 min of centrifugation at 7000 rpm. The benzodiazepines were separated by a chromatographic separation technique carried out by a UPLC system consisting of a binary mobile phase. The solvent system comprises of 0.1% Formic acid in Milli-Q (Solvent A) and 0.1% Formic acid in ACN (Solvent B) with a gradient flow of 3.5 min total analysis time. Under the optimized conditions, the calibration curve was studied in the range of 0.124-7.810 ng mL-1. The regression correlation coefficient (R2) value of all targeted analytes ranges from 0.993 to 0.999. The LOD and LOQ of VAUS-ME-SFO methods using LC-MS/MS analysis range from 0.316 to 0.968 ng mL-1 and 1.055-3.277 ng mL-1 respectively. The repeatability within a day varied from 0.6 to 3.5%, and the reproducibility across days varied from 2.2 to 6.3%. The recoveries ranges for water, alcoholic and non-alcoholic beverages from 70.77 to 114.53%, 63.20-102.21% and 66.23-113.28% respectively. Further, the degradation kinetics was studied to establish the half-life of each targeted analyte in the matrix undertaken in the study. The water samples were classified based on their BDZs residues. This implies that the more health care and anthropogenic activity, the more the BDZs residue will be in water samples.


Subject(s)
Benzodiazepines , Liquid Phase Microextraction , Chromatography, Liquid/methods , Water , Reproducibility of Results , Tandem Mass Spectrometry/methods , Solvents/chemistry , Beverages , Liquid Phase Microextraction/methods
9.
Mol Neurobiol ; 60(6): 3496-3506, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36879138

ABSTRACT

Movement disorder (MD) is an important manifestation of neurologic Wilson disease (NWD), but there is a paucity of information on dopaminergic pathways. We evaluate dopamine and its receptors in patients with NWD and correlate the changes with MD and MRI changes. Twenty patients with NWD having MD were included. The severity of dystonia was assessed using BFM (Burke-Fahn-Marsden) score. The neurological severity of NWD was categorized as grades I to III based on the sum score of 5 neurological signs and activity of daily living. Dopamine concentration in plasma and CSF was measured using liquid chromatography-mass spectrometry, and D1 and D2 receptor expression at mRNA by reverse transcriptase polymerase chain reaction in patients and 20 matched controls. The median age of the patients was 15 years and 7 (35%) were females. Eighteen (90%) patients had dystonia and 2 (10%) had chorea. The CSF dopamine concentration (0.08 ± 0.02 vs 0.09 ± 0.017 pg/ml; p = 0.42) in the patients and controls was comparable, but D2 receptor expression was reduced in the patients (0.41 ± 0.13 vs 1.39 ± 1.04; p = 0.01). Plasma dopamine level correlated with BFM score (r = 0.592, p < 0.01) and D2 receptor expression with the severity of chorea (r = 0.447, p < 0.05). The neurological severity of WD correlated with plasma dopamine concentration (p = 0.006). Dopamine and its receptors were not related to MRI changes. The central nervous system dopaminergic pathway is not enhanced in NWD, which may be due to structural damage to the corpus striatum and/or substantia nigra.


Subject(s)
Chorea , Dystonia , Hepatolenticular Degeneration , Movement Disorders , Female , Humans , Adolescent , Male , Dopamine/metabolism , Hepatolenticular Degeneration/metabolism , Dystonia/metabolism , Chorea/metabolism , Receptors, Dopamine D2/metabolism , Corpus Striatum/metabolism , Receptors, Dopamine D1/metabolism , Substantia Nigra/metabolism , Carrier Proteins/metabolism
10.
Chemosphere ; 326: 138353, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36914009

ABSTRACT

ß-triketone herbicides have been efficiently employed as an alternate to atrazine. Triketones are 4-hydroxyphenylpyruvate dioxygenase (HPPD) enzyme inhibitors and exposure is reported to cause significant increase in plasma tyrosine levels. In this study, we have employed a non-target organism Caenorhabditis elegans to determine the impact of ß-triketone exposures at recommended field doses (RfD). Our results indicate sulcotrione and mesotrione, negatively influence the survival, behavior, and reproduction of the organism at RfD. Additionally, we have traced the parallels regarding the impact of triketones on the tyrosine metabolism pathway, in C. elegans to those in mammalian models, wherein the expression of the tyrosine metabolism pathway genes are altered, directly influencing tyrosine catabolism leading to significant tyrosine accumulation in exposed organism. Further, we investigated the impact of sulcotrione and mesotrione exposure on fat deposition (triglyceride levels, Oil-Red-O staining and lipidomics) and the fatty acid metabolism pathway. In the exposed worms, the expression of enlongases and fatty acid desaturases were up-regulated along with an increase in the levels of triglycerides. Thus, the data indicates a positive association of ß-triketone exposure to mis-regulation of the fatty acid metabolism pathway genes leading to fat accumulation in worms. Therefore, ß-triketone might be a potential obesogen.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Herbicides , Animals , Herbicides/toxicity , Caenorhabditis elegans/genetics , Tyrosine , Cyclohexanones/toxicity , Fatty Acids , Mammals
11.
Environ Sci Pollut Res Int ; 30(10): 25181-25192, 2023 Feb.
Article in English | MEDLINE | ID: mdl-34846664

ABSTRACT

In recent years, special attention has been given to emission research that led to the deposition of toxicants from road traffic. Thus, it is imperative to focus on heavy metal (HM) stressors in food items, their source contribution, and health risk assessment providing insight into their spatial role at the population level. In this study, heavy metal in the street vended noodles was studied while correlating the quality of noodle with different environmental origins. The samples were prepared using acid digestion and analysed by flame atomic absorption spectrophotometer, except Hg which was analysed by direct mercury analyser. The results showed that some heavy metals like Cr, Pb, Mn, Cd, and Hg exceed their permissible limits established by the international legislation for food products. In the noodle samples, the concentration of heavy metal ranged from < 0.1 to 0.904 mg/kg for Pb, < 0.09 to 0.843 mg/kg for Ni, < 0.004 to 0.201 mg/kg for Cd, < 0.0001 to 0.004 mg/kg for Hg, < 0.01 to 1.388 mg/kg for Cu, < 0.015 to 8.049 mg/kg for Mn, and < 0.02 to 16.514 mg/kg for Cr. Noodle samples vended on high traffic density streets are directly associated with increased HM content due to atmospheric deposition from the surrounding. Source apportionment study determines that HM contamination belongs to the same source of origin, except Cr. Based on the cluster analysis, these samples fall into three major groups that were further validated by the canonical discriminant function. Health risk prediction by Monte Carlo simulation revealed an elevated non-carcinogenic health hazard risk to consumers with a hazard index (HI) shift from 71 to 75%. Health hazard analysis showed that consumers of high traffic density street vended food are at higher risk of developing health-related issues. This study is important to evaluate the health risk of the population exposed to heavy metals due to ingestion of street vended food.


Subject(s)
Mercury , Metals, Heavy , Soil Pollutants , Cadmium/analysis , Lead/analysis , Metals, Heavy/analysis , Risk Assessment , Mercury/analysis , Environmental Monitoring , China , Soil Pollutants/analysis
12.
ACS Omega ; 7(46): 41997-42011, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36440176

ABSTRACT

Low-cost alginate gels of activated carbons were prepared, which were derived from the peels of banana and sweet lime. The synthesized carbon was activated and immobilized on alginate, producing its gel. These gels were categorized according to their methods of drying, in which air drying, freeze drying, and supercritical drying led to the formation of xerogels, cryogels, and aerogels, respectively. The gels were used for adsorption of heavy metals from their aqueous solution. The heavy metals that were targeted for removal were Pb(II), Cd(II), Cr(VI), As(III), and Hg(II). Among all the adsorbents, the alginate cryogel of sweet lime-derived activated carbon (SLACC) showed the highest removal percentage of heavy metals, and thus, it was used for batch study. The adsorption of heavy metals by SLACC was checked at different times, pH values, adsorbent doses, temperatures, and adsorbate concentrations. The study revealed that the pseudo-second-order model best described the kinetic study, while the adsorption followed the Freundlich isotherm. SLACC showed maximum adsorption capacities (q cal) of 3.71, 4.22, 20.04, 7.31, and 4.37 mg/g for Cr, Cd, Pb, As, and Hg, respectively, when 20 mg of SLACC was used for the removal of 4 ppm concentration of the targeted heavy metals from their 20 mL solution. Based on the thermodynamic study, it was found that the adsorption was spontaneous and exothermic. Furthermore, the adsorbent was also used on real water samples and showed up to 90% removal efficiency for these targeted heavy metals. SLACC was regenerated with 0.1 M ethylenediaminetetraacetic acid (EDTA) solution and reused for five cycles, in which the percentage removal of heavy metals was more than 50% till the fourth cycle. Furthermore, the leaching study showed that no toxic elements had leached from SLACC into water, making it a safe adsorbent.

13.
Environ Toxicol Pharmacol ; 96: 103977, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36210596

ABSTRACT

In the present study, effect of exposure of bisphenol A (BPA) and combined exposure of BPA + HSD has been investigated on the glucose homeostasis and associated renal complications in Drosophila. Exposure of 1.0 mM BPA alone induced type 2 diabetes like condition (T2D) in adult male D. melanogaster via oxidative stress. Elevated TGF-ß signaling was evident by increased expression of baboon (babo) in BPA exposed organism that stimulated the modulation of extracellular matrix (ECM) component collagen IV resulting in the fibrosis of the Malpighian tubules (MTs). Combined exposure of BPA + HSD (high sucrose diet) resulted in the increased magnitude of T2D and MTs dysfunction parameters. Taken together, the study illustrates that BPA has diabetogenic potential in exposed Drosophila that caused adverse effects on their MTs and combined exposure with BPA and HSD could aggravate the renal tubular dysfunction. The study further suggests the use of Drosophila model to study the environmental chemicals induced diabetes mediated renal dysfunction.


Subject(s)
Diabetes Mellitus, Type 2 , Drosophila Proteins , Kidney Diseases , Animals , Male , Drosophila melanogaster , Diabetes Mellitus, Type 2/metabolism , Sucrose/adverse effects , Sucrose/metabolism , Benzhydryl Compounds/adverse effects , Diet , Phenotype , Activin Receptors/genetics , Activin Receptors/metabolism , Activin Receptors/pharmacology , Drosophila Proteins/genetics
14.
Environ Sci Pollut Res Int ; 29(58): 88269-88287, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35831653

ABSTRACT

Urban air pollution is a growing menace leading to human discomfort, increased hospitalizations, morbidity, and mortality. This study deals with deteriorated air quality due to firecracker bursting during Diwali in Lucknow. Inhalable particulates and gaseous pollutants were monitored during Diwali 2020 using air samplers. Elements, ions, and surface morphology of particles were analyzed using ICP-MS, ion chromatograph, and SEM-EDX, respectively. PM10, PM2.5, SO2, and NO2 were 558, 352, 44, and 86 µg/m3 during Diwali night and 233, 101, 17, and 40 µg/m3 on pre-Diwali night while 241, 122, 24, and 43 µg/m3 on Diwali day. Concentrations surged for PM10: 139% and 132%, PM2.5: 249% and 189%, SO2: 159% and 83%, and NO2: 115% and 100% on Diwali night compared to pre-Diwali night and corresponding Diwali day, respectively. Al, K, Ba, and B showed dominance in PM10 whereas Zn, Al, Ba, and K in PM2.5 on Diwali night. The order of metal abundance in PM2.5 was Cd < Co < Ag < As < Cr < Ni < Cu < Bi < Pb < Mn < Sr < Fe < B < Zn < Al < Ba < K. Cations NH4+, K+, Mg2+, Ca2+, and anions F-, Cl-, NO3-, Br-, NO2-, SO4-2, PO43- showed a 2-8 fold increase on Diwali night relative to pre-Diwali night. Average metal concentrations varied by 2.2, 1.6, and 0.09 times on Diwali than pre-Diwali in residential, commercial, and industrial areas, respectively. PM10 concentration increased by 458% and 1140% while PM2.5, 487%, and 2247% than respective NAAQS and WHO standards. Tiny firecracker particles vary in toxicity as compared to vehicular emissions and have enhanced bioavailability leading to severe threat in terms of LRI, COPD, and atherosclerosis for city dwellers. It is imperative to recognize the present status of ambient air quality and implement regulatory strategies for emission reduction.


Subject(s)
Air Pollutants , Air Pollution , Humans , Air Pollutants/analysis , Particulate Matter/analysis , Nitrogen Dioxide , Environmental Monitoring , Air Pollution/analysis , Metals/analysis , Ions , India , Particle Size
15.
Environ Epidemiol ; 6(3): e213, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35702505

ABSTRACT

Background: Chemical leakages cause devastating health effects on humans. On 6 February 2020, seven deaths were reported following a hazardous chemical leakage in a village in Uttar Pradesh, India. We investigated the event to identify the cause and propose recommendations. Methods: We defined a case as sudden onset of breathlessness, headache, or death in the village, 6-7 February 2020. We conducted a house-to-house case search and calculated attack rate (AR) and case-fatality rate (CFR) by age and gender. We conducted an environmental investigation at the leakage site and sent the chemicals for forensic analysis. We obtained the cause of death through autopsy reports. Results: Out of 2,942 residents, we identified 23 cases (AR = 8/1,000) and seven deaths (CFR = 30%). The median age of the case was 42 years (range, 2-64 years). The AR was higher among males (14/1,000 [19/1,402]). All the 23 case-patients who were sleeping at the chemical leakage site or visited to witness the event developed symptoms, and all seven cases who were sleeping within 150 meters of the leakage site died. The environmental investigation revealed leakage of hazardous substances from the storage tank. Toxicology analysis confirmed the leaked chemical as Lindane (gamma-hexachlorocyclohexane), and autopsy reports confirmed the cause of death as asphyxia. Conclusions: Asphyxia following the leakage of Lindane from the storage tank possibly led to sudden deaths. We recommend using leak-proof tanks to ensure safe storage and disposal, law enforcement, and regulations to prevent people from staying close to chemical storage sites.

16.
Environ Sci Pollut Res Int ; 29(35): 53737-53754, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35290586

ABSTRACT

This research article aims to establish an easy and well-defined analytical method for detection and quantification of multiclass pesticides in Gomti river water samples because the increased agricultural activities, industrialization, and urbanization had increased the presence of pesticides in the ecosystem which causes the depletion of water quality making it a global concern. The analytical method, vortex-assisted ultrasonication-based dispersive liquid-liquid microextraction-solidification of floating organic droplets (VAUS-DLLME-SFO) was optimized using one parameter at a time approach which gave the recovery between 69.45 and 114.15%, limit of detection (LOD), and limit of quantification (LOQ) 0.0011-0.0111 µg/L and 0.0033-0.0368 µg/L, respectively, and RSD in the range of 0.75-1.29 which shows sensitivity and accuracy better than earlier reported methods. The data obtained were subjected to measurement uncertainty, risk assessment, and multivariate statistical analysis to establish the robustness of the developed analytical method. The measurement uncertainty found was concluded to be in the acceptable range for analytical results. Furthermore, the real samples were analyzed and the associated value of the risk quotient was found to be less than 1, except for aquatic invertebrates, establishing the fact that the current concentration of pesticides has no such negative threat to flora and fauna. The possible source of pesticides in the Gomti river system was established by multivariate analysis. It was thus concluded that anthropogenic activity is responsible for the variable concentration of pesticides found in the sample.


Subject(s)
Liquid Phase Microextraction , Pesticide Residues , Pesticides , Ecosystem , Liquid Phase Microextraction/methods , Pesticide Residues/analysis , Pesticides/analysis , Risk Assessment , Rivers/chemistry
17.
Microbiol Res ; 259: 127014, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35349854

ABSTRACT

Symbiotic interactions play a crucial role in the phosphate (Pi) nutrient status of the host plant and offer resilience during biotic and abiotic stresses. Despite a competitive behavior of arsenic (AsV) with Pi, Serendipita indica association promotes plant growth by reducing arsenic bioavailability in the rhizosphere. Reduced arsenic availability is due to the adsorption, accumulation, and precipitation of arsenic in the fungus. The present investigation focused on the fitness and performance of Pi acquisition and utilization in S. indica for growth and metabolism under arsenic stress. The fungus accumulates a massive amount of arsenic up to 2459.3 ppm at a tolerable limit of arsenic supply (1 mM) with a bioaccumulation factor (BAF) 32. Arsenic induces Pi transporter expression to stimulate the arsenic acquisition in the fungus. At the same time, Pi accumulation was also enhanced by 112.2 times higher than the control with an increase in poly-P (polyphosphate) content (6.69 times) of the cell. This result suggests arsenic does not hamper poly-P storage in the cell but shows a marked delocalization of stored poly-P from the vacuoles. Furthermore, an enhanced exopolyphosphatase activity and poly-P storage during arsenic stress suggest induction of cellular machinery for the utilization of Pi is required to deal with arsenic toxicity and competition. However, at high arsenic supply (2.5 and 5 mM), 14.55 and 22.07 times reduced Pi utilization, respectively, was observed during the Pi uptake by the fungus. The reduction of Pi uptake reduces the cell growth and biomass due to competition between arsenic and phosphate. The study suggests no negative impact of arsenic on the Pi acquisition, storage, and metabolism in symbiotic fungus, S. indica, under environmental arsenic contamination.


Subject(s)
Arsenic , Basidiomycota , Basidiomycota/metabolism , Phosphates/metabolism , Plant Roots/microbiology
18.
Sci Total Environ ; 795: 148722, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34247088

ABSTRACT

Sewage sludge (SS) is an abundantly available feedstock, which is generally considered as potential threat to human health and environment. Its utilization in any process would be of great help for environmental sustainability. Accordingly, this work aimed to prepare and characterize the sewage sludge biochar (SSB) at temperatures, i.e. (500, 450, 400, and 350 °C), and further analyze the available nutrients and contaminants as well as agri application potential. The results indicated that the total nitrogen (TN), electrical conductivity (EC), and total organic carbon (TOC) content in SSBs decreased with increasing pyrolysis temperature. The overall concentration of polycyclic aromatic hydrocarbons (PAHs) in SSBs was substantially lower (1.8-9.7-fold depending on pyrolysis temperature) than in SS. Pyrolysis of SS enriched the heavy metals content in SSBs and the relative enrichment factor (RE) factor varied between 1.1 and 2.1 depending on the pyrolysis temperature. Furthermore, compared to SS, the leaching rate of heavy metals was significantly decreased in SSBs (1.1-100-fold depending on the pyrolysis temperature) and the pyrolysis temperature of 400-450 °C prevented the Ni, Pb, Cr, and Zn leaching in SSB. The total PAH and heavy metals content in biochars were below the control standard for land application. Finally, testing of the growth-promoting effect of biochar extracts on fenugreek plants revealed that SSB prepared at 350 °C significantly stimulated the root and shoot length of 5-days old seedlings. This study provides important data for potential environmental risks of SSB applications.


Subject(s)
Metals, Heavy , Pyrolysis , Charcoal , Humans , Sewage , Temperature
19.
J Biochem Mol Toxicol ; 35(8): e22819, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34056787

ABSTRACT

Hexavalent chromium [Cr(VI)] is a genotoxic chemical, and in the chemical-exposed organism, oxidative stress is one of the leading causative mechanisms of genotoxicity. Heat shock protein-70 (Hsp70) is reported to be modulated in environmental chemical exposed organisms. Inadequate information on the protective role of Hsp70 in chemical-induced DNA lesions prompted us to investigate this possibility in a well-studied genetically tractable in vivo model Drosophila melanogaster. In the midgut cells of Cr(VI)-exposed hsp70-knockout (KO), -knockdown (KD), and -overexpression Drosophila strains, no significant change in double-strand breaks generation was observed in comparison to similarly exposed w 1118 and the respective genetic control strain after 48 h. Therefore, the role of hsp70 was investigated on oxidative DNA damage induction in the exposed organisms after 24 h. Oxidized DNA lesions (particularly oxidized purine-based lesions), 8-oxo-dG level, and oxidative stress endpoints were found to be significantly elevated in hsp70-KO and -KD strains in comparison to similarly exposed w 1118 and respective genetic control strain. On the contrary, in ubiquitous hsp70-overexpression strain exposed to Cr(VI), these endpoints were significantly lowered concurrently with increased GSH level through elevated gclc, and gclm expression, Gclc level, and GCL activity. The study suggests that as a consequence of hsp70 overexpression, the augmented GSH level in cells vis-a-vis GSH de novo synthesis can counteract Cr(VI)-induced oxidized DNA lesions.


Subject(s)
Chromium/toxicity , DNA Damage , Drosophila Proteins/metabolism , Glutathione/metabolism , HSP70 Heat-Shock Proteins/metabolism , Oxidative Stress/drug effects , Animals , Drosophila Proteins/genetics , Drosophila melanogaster , HSP70 Heat-Shock Proteins/genetics , Oxidative Stress/genetics
20.
Sci Rep ; 11(1): 8158, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33854073

ABSTRACT

Otoliths are commonly used to discriminate between fish stocks, through both elemental composition and otolith shape. Typical studies also have a large number of elemental compositions and shape measures relative to the number of otolith samples, with these measures exhibiting strong mean-variance relationships. These properties make otolith composition and shape data highly suitable for use within a multivariate generalised linear model (MGLM) framework, yet MGLMs have never been applied to otolith data. Here we apply both a traditional distance based permutational multivariate analysis of variance (PERMANOVA) and MGLMs to a case study of striped snakehead (Channa striata) in India. We also introduce the Tweedie and gamma distributions as suitable error structures for the MGLMs, drawing similarities to the properties of Biomass data. We demonstrate that otolith elemental data and combined otolith elemental and shape data violate the assumption of homogeneity of variance of PERMANOVA and may give misleading results, while the assumptions of the MGLM with Tweedie and gamma distributions are shown to be satisfied and are appropriate for both otolith shape and elemental composition data. Consistent differences between three groups of C. striata were identified using otolith shape, otolith chemistry and a combined otolith shape and chemistry dataset. This suggests that future research should be conducted into whether there are demographic differences between these groups which may influence management considerations. The MGLM method is widely applicable and could be applied to any multivariate otolith shape or elemental composition dataset.

SELECTION OF CITATIONS
SEARCH DETAIL
...