Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38592835

ABSTRACT

Maize (Zea mays L.) is an important cereal and is affected by climate change. Therefore, the production of climate-smart maize is urgently needed by preserving diverse genetic backgrounds through the exploration of their genetic diversity. To achieve this, 96 maize inbred lines were used to screen for phenotypic yield-associated traits and grain quality parameters. These traits were studied across two different environments (Anand and Godhra) and polymorphic simple sequence repeat (SSR) markers were employed to investigate the genetic diversity, population structure, and trait-linked association. Genotype-environment interaction (GEI) reveals that most of the phenotypic traits were governed by the genotype itself across the environments, except for plant and ear height, which largely interact with the environment. The genotypic correlation was found to be positive and significant among protein, lysine and tryptophan content. Similarly, yield-attributing traits like ear girth, kernel rows ear-1, kernels row-1 and number of kernels ear-1 were strongly correlated to each other. Pair-wise genetic distance ranged from 0.0983 (1820194/T1 and 1820192/4-20) to 0.7377 (IGI-1101 and 1820168/T1). The SSRs can discriminate the maize population into three distinct groups and shortlisted two genotypes (IGI-1101 and 1820168/T1) as highly diverse lines. Out of the studied 136 SSRs, 61 were polymorphic to amplify a total of 131 alleles (2-3 per loci) with 0.46 average gene diversity. The Polymorphism Information Content (PIC) ranged from 0.24 (umc1578) to 0.58 (umc2252). Similarly, population structure analysis revealed three distinct groups with 19.79% admixture among the genotypes. Genome-wide scanning through a mixed linear model identifies the stable association of the markers umc2038, umc2050 and umc2296 with protein, umc2296 and umc2252 with tryptophan, and umc1535 and umc1303 with total soluble sugar. The obtained maize lines and SSRs can be utilized in future maize breeding programs in relation to other trait characterizations, developments, and subsequent molecular breeding performances for trait introgression into elite genotypes.

2.
Heliyon ; 10(5): e27048, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38463846

ABSTRACT

Castor (Ricinus communis L.) is an industrially important oil producing crop belongs to Euphorbiaceae family. Castor oil has unique chemical properties make it industrially important crop. It is a member of monotypic genus even though it has ample amount of variability. Using this variability, conventionally many varieties and hybrids have been developed. But, like other crops, the modern and unconventional methods of crop improvement has not fully explored in castor. This article discusses the use of polyploidy induction, distant/wide hybridization and mutation breeding as tools for generating variety. Modern approaches accelerate the speed of crop breeding as an alternative tool. To achieve this goal, molecular markers are employed in breeding to capture the genetic variability through molecular analysis and population structuring. Allele mining is used to trace the evolution of alleles, identify new haplotypes and produce allele specific markers for use in marker aided selection using Genome wide association studies (GWAS) and quantitative trait loci (QTL) mapping. Plant genetic transformation is a rapid and effective mode of castor improvement is also discussed here. The efforts towards developing stable regeneration protocol provide a wide range of utility like embryo rescue in distant crosses, development of somaclonal variation, haploid development using anther culture and callus development for stable genetic transformation has reviewed in this article. Omics has provided intuitions to the molecular mechanisms of (a)biotic stress management in castor along with dissected out the possible genes for improving the yield. Relating genes to traits offers additional scientific inevitability leading to enhancement and sympathetic mechanisms of yield improvement and several stress tolerance.

3.
Heliyon ; 9(2): e13515, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36873144

ABSTRACT

Castor (Ricinus communis L.) is an important industrial multipurpose non-edible oilseed C3 crop belongs to spurge family popularly known as Euphorbiaceae. Its oil has exceptional properties which provides an industrial importance to this crop. The present investigation is aimed to judge the stability and performance of yield and yield assigning traits and selection of suitable genotype for varied locality of western rainfed regions of India. During the study with 90 genotypes, the genotype × environment interaction was found to be significant for seed yield per plant as well as for plant height up to primary raceme, total length of primary raceme, effective length of primary raceme, capsules on main raceme and effective number of racemes per plant. E1 is the least interactive and highly representative site for seed yield. Which won where and what biplot decipher ANDCI 10-01 as vertex genotype for E3 while ANDCI 10-03 and P3141 for E1 and E2. Average Environment co-ordinate identify ANDCI 10-01, P3141, P3161, JI 357 and JI 418 as tremendously stable and high seed yielding genotypes. The study outlined the pertinency of Multi Trait Stability Index, that calculated based on the genotype-ideotype distance as the multiple interacting variables. MTSI evaluated all genotypes and sort ANDCI 12-01, JI 413, JI 434, JI 380, P3141, ANDCI 10-03, SKI 215, ANDCI 09, SI 04, JI 437, JI 440, RG 3570, JI 417 and GAC 11 with maximum stability and high mean performance of analyzed interacting traits.

SELECTION OF CITATIONS
SEARCH DETAIL
...