Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Patient Cent Res Rev ; 9(2): 98-107, 2022.
Article in English | MEDLINE | ID: mdl-35600228

ABSTRACT

Purpose: Electrocardiography (ECG)-derived machine learning models can predict echocardiography (echo)-derived indices of systolic or diastolic function. However, systolic and diastolic dysfunction frequently coexists, which necessitates an integrated assessment for optimal risk-stratification. We explored an ECG-derived model that emulates an echo-derived model that combines multiple parameters for identifying patient phenogroups at risk for major adverse cardiac events (MACE). Methods: In this substudy of a prospective, multicenter study, patients from 3 institutions (n=727) formed an internal cohort, and the fourth institution was reserved as an external test set (n=518). A previously validated patient similarity analysis model was used for labeling the patients as low-/high-risk phenogroups. These labels were utilized for training an ECG-derived deep neural network model to predict MACE risk per phenogroup. After 5-fold cross-validation training, the model was tested on the reserved external dataset. Results: Our ECG-derived model showed robust classification of patients, with area under the receiver operating characteristic curve of 0.86 (95% CI: 0.79-0.91) and 0.84 (95% CI: 0.80-0.87), sensitivity of 80% and 76%, and specificity of 88% and 75% for the internal and external test sets, respectively. The ECG-derived model demonstrated an increased probability for MACE in high-risk vs low-risk patients (21% vs 3%; P<0.001), which was similar to the echo-trained model (21% vs 5%; P<0.001), suggesting comparable utility. Conclusions: This novel ECG-derived machine learning model provides a cost-effective strategy for predicting patient subgroups in whom an integrated milieu of systolic and diastolic dysfunction is associated with a high risk of MACE.

2.
NPJ Digit Med ; 4(1): 95, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34088961

ABSTRACT

Patients with influenza and SARS-CoV2/Coronavirus disease 2019 (COVID-19) infections have a different clinical course and outcomes. We developed and validated a supervised machine learning pipeline to distinguish the two viral infections using the available vital signs and demographic dataset from the first hospital/emergency room encounters of 3883 patients who had confirmed diagnoses of influenza A/B, COVID-19 or negative laboratory test results. The models were able to achieve an area under the receiver operating characteristic curve (ROC AUC) of at least 97% using our multiclass classifier. The predictive models were externally validated on 15,697 encounters in 3125 patients available on TrinetX database that contains patient-level data from different healthcare organizations. The influenza vs COVID-19-positive model had an AUC of 98.8%, and 92.8% on the internal and external test sets, respectively. Our study illustrates the potentials of machine-learning models for accurately distinguishing the two viral infections. The code is made available at https://github.com/ynaveena/COVID-19-vs-Influenza and may have utility as a frontline diagnostic tool to aid healthcare workers in triaging patients once the two viral infections start cocirculating in the communities.

3.
medRxiv ; 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33469602

ABSTRACT

Patients with influenza and SARS-CoV2/Coronavirus disease 2019 (COVID-19) infections have different clinical course and outcomes. We developed and validated a supervised machine learning pipeline to distinguish the two viral infections using the available vital signs and demographic dataset from the first hospital/emergency room encounters of 3,883 patients who had confirmed diagnoses of influenza A/B, COVID-19 or negative laboratory test results. The models were able to achieve an area under the receiver operating characteristic curve (ROC AUC) of at least 97% using our multiclass classifier. The predictive models were externally validated on 15,697 encounters in 3,125 patients available on TrinetX database that contains patient-level data from different healthcare organizations. The influenza vs. COVID-19-positive model had an AUC of 98%, and 92% on the internal and external test sets, respectively. Our study illustrates the potentials of machine-learning models for accurately distinguishing the two viral infections. The code is made available at https://github.com/ynaveena/COVID-19-vs-Influenza and may be have utility as a frontline diagnostic tool to aid healthcare workers in triaging patients once the two viral infections start cocirculating in the communities.

4.
JACC Cardiovasc Imaging ; 14(3): 541-555, 2021 03.
Article in English | MEDLINE | ID: mdl-33223496

ABSTRACT

OBJECTIVES: This study sought to explore the spectrum of cardiac abnormalities in student athletes who returned to university campus in July 2020 with uncomplicated coronavirus disease 2019 (COVID-19). BACKGROUND: There is limited information on cardiovascular involvement in young individuals with mild or asymptomatic COVID-19. METHODS: Screening echocardiograms were performed in 54 consecutive student athletes (mean age 19 years; 85% male) who had positive results of reverse transcription polymerase chain reaction nasal swab testing of the upper respiratory tract or immunoglobulin G antibodies against severe acute respiratory syndrome coronavirus type 2. Sequential cardiac magnetic resonance imaging was performed in 48 (89%) subjects. RESULTS: A total of 16 (30%) athletes were asymptomatic, whereas 36 (66%) and 2 (4%) athletes reported mild and moderate COVID-19 related symptoms, respectively. For the 48 athletes completing both imaging studies, abnormal findings were identified in 27 (56.3%) individuals. This included 19 (39.5%) athletes with pericardial late enhancements with associated pericardial effusion. Of the individuals with pericardial enhancements, 6 (12.5%) had reduced global longitudinal strain and/or an increased native T1. One patient showed myocardial enhancement, and reduced left ventricular ejection fraction or reduced global longitudinal strain with or without increased native T1 values was also identified in an additional 7 (14.6%) individuals. Native T2 findings were normal in all subjects, and no specific imaging features of myocardial inflammation were identified. Hierarchical clustering of left ventricular regional strain identified 3 unique myopericardial phenotypes that showed significant association with the cardiac magnetic resonance findings (p = 0.03). CONCLUSIONS: More than 1 in 3 previously healthy college athletes recovering from COVID-19 infection showed imaging features of a resolving pericardial inflammation. Although subtle changes in myocardial structure and function were identified, no athlete showed specific imaging features to suggest an ongoing myocarditis. Further studies are needed to understand the clinical implications and long-term evolution of these abnormalities in uncomplicated COVID-19.


Subject(s)
Athletes , COVID-19/complications , Cardiovascular Diseases/virology , Pneumonia, Viral/complications , Universities , Cardiovascular Diseases/diagnostic imaging , Echocardiography , Female , Humans , Magnetic Resonance Imaging, Cine , Male , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Young Adult
5.
Eur Heart J Digit Health ; 1(1): 51-61, 2020 Nov.
Article in English | MEDLINE | ID: mdl-37056293

ABSTRACT

Aims: Coronary artery calcium (CAC) scoring is an established tool for cardiovascular risk stratification. However, the lack of widespread availability and concerns about radiation exposure have limited the universal clinical utilization of CAC. In this study, we sought to explore whether machine learning (ML) approaches can aid cardiovascular risk stratification by predicting guideline recommended CAC score categories from clinical features and surface electrocardiograms. Methods and results: In this substudy of a prospective, multicentre trial, a total of 534 subjects referred for CAC scores and electrocardiographic data were split into 80% training and 20% testing sets. Two binary outcome ML logistic regression models were developed for prediction of CAC scores equal to 0 and ≥400. Both CAC = 0 and CAC ≥400 models yielded values for the area under the curve, sensitivity, specificity, and accuracy of 84%, 92%, 70%, and 75%, and 87%, 91%, 75%, and 81%, respectively. We further tested the CAC ≥400 model to risk stratify a cohort of 87 subjects referred for invasive coronary angiography. Using an intermediate or higher pretest probability (≥15%) to predict CAC ≥400, the model predicted the presence of significant coronary artery stenosis (P = 0.025), the need for revascularization (P < 0.001), notably bypass surgery (P = 0.021), and major adverse cardiovascular events (P = 0.023) during a median follow-up period of 2 years. Conclusion: ML techniques can extract information from electrocardiographic data and clinical variables to predict CAC score categories and similarly risk-stratify patients with suspected coronary artery disease.

SELECTION OF CITATIONS
SEARCH DETAIL