Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Microorganisms ; 10(3)2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35336095

ABSTRACT

Increasing evidence suggests that prolonged antibiotic therapy in preterm infants is associated with increased mortality and morbidities, such as necrotizing enterocolitis (NEC), a devastating gastrointestinal pathology characterized by intestinal inflammation and necrosis. While a clinical correlation exists between antibiotic use and the development of NEC, the potential causality of antibiotics in NEC development has not yet been demonstrated. Here, we tested the effects of systemic standard-of-care antibiotic therapy for ten days on intestinal development in neonatal mice. Systemic antibiotic treatment impaired the intestinal development by reducing intestinal cell proliferation, villi height, crypt depth, and goblet and Paneth cell numbers. Oral bacterial challenge in pups who received antibiotics resulted in NEC-like intestinal injury in more than half the pups, likely due to a reduction in mucous-producing cells affecting microbial-epithelial interactions. These data support a novel mechanism that could explain why preterm infants exposed to prolonged antibiotics after birth have a higher incidence of NEC and other gastrointestinal disorders.

2.
Cells ; 10(11)2021 11 01.
Article in English | MEDLINE | ID: mdl-34831200

ABSTRACT

The primary cilium, an antenna-like structure that protrudes out from the cell surface, is present in most cell types. It is a microtubule-based organelle that serves as a mega-signaling center and is important for sensing biochemical and mechanical signals to carry out various cellular processes such as proliferation, migration, differentiation, and many others. At any given time, cilia length is determined by a dynamic balance of cilia assembly and disassembly processes. Abnormally short or long cilia can cause a plethora of human diseases commonly referred to as ciliopathies, including, but not limited to, skeletal malformations, obesity, autosomal dominant polycystic kidney disease, retinal degeneration, and bardet-biedl syndrome. While the process of cilia assembly is studied extensively, the process of cilia disassembly and its biological role(s) are less well understood. This review discusses current knowledge on ciliary disassembly and how different cellular processes and molecular signals converge to carry out this process. This information will help us understand how the process of ciliary disassembly is regulated, identify the key steps that need further investigation, and possibly design therapeutic targets for a subset of ciliopathies that are causally linked to defective ciliary disassembly.


Subject(s)
Cilia/metabolism , Animals , Humans , Microtubules/metabolism , Models, Biological , Polymerization , Signal Transduction
3.
Mol Cancer Res ; 19(9): 1534-1545, 2021 09.
Article in English | MEDLINE | ID: mdl-34172534

ABSTRACT

Adipose tissue, which can provide adipokines and nutrients to tumors, plays a key role in promoting ovarian cancer metastatic lesions in peritoneal cavity. The adipokine apelin promotes ovarian cancer metastasis and progression through its receptor APJ, which regulates cell proliferation, energy metabolism, and angiogenesis. The objective of this study was to investigate the functional role and mechanisms of the apelin-APJ pathway in ovarian cancer metastasis, especially in context of tumor cell-adipocyte interactions. When co-cultured in the conditioned media (AdipoCM) derived from 3T3-L1 adipocytes, which express and secrete high apelin, human ovarian cancer cells with high APJ expression showed significant increases in migration and invasion in vitro. We also found that cells expressing high levels of APJ had increased cell adhesion to omentum ex vivo, and preferentially "home-in" on the omentum in vivo. These apelin-induced pro-metastatic effects were reversed by APJ antagonist F13A in a dose-dependent manner. Apelin-APJ activation increased lipid droplet accumulation in ovarian cancer cells, which was further intensified in the presence of AdipoCM and reversed by F13A or APJ knockdown. Mechanistically, this increased lipid uptake was mediated by CD36 upregulation via APJ-STAT3 activation, and the lipids were utilized in promoting fatty acid oxidation via activation of AMPK-CPT1a axis. Together, our studies demonstrate that adipocyte-derived apelin activates APJ-expressing tumor cells in a paracrine manner, promoting lipid uptake and utilization and providing energy for ovarian cancer cell survival at the metastatic sites. Hence, the apelin-APJ pathway presents a novel therapeutic target to curb ovarian cancer metastasis. IMPLICATIONS: Targeting the APJ pathway in high-grade serous ovarian carcinoma is a novel strategy to inhibit peritoneal metastasis.


Subject(s)
Apelin Receptors/metabolism , Apelin/metabolism , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Lipid Metabolism , Ovarian Neoplasms/pathology , Peritoneal Neoplasms/secondary , Animals , Apelin/genetics , Apelin Receptors/genetics , Apoptosis , Biomarkers, Tumor/genetics , Cell Cycle , Cell Proliferation , Female , Humans , Lipids/analysis , Mice , Mice, Nude , Neoplasm Invasiveness , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
4.
Int J Mol Sci ; 22(9)2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33923232

ABSTRACT

The novel protein ADTRP, identified and described by us in 2011, is androgen-inducible and regulates the expression and activity of Tissue Factor Pathway Inhibitor, the major inhibitor of the Tissue Factor-dependent pathway of coagulation on endothelial cells. Single-nucleotide polymorphisms in ADTRP associate with coronary artery disease and myocardial infarction, and deep vein thrombosis/venous thromboembolism. Some athero-protective effects of androgen could exert through up-regulation of ADTRP expression. We discovered a critical role of ADTRP in vascular development and vessel integrity and function, manifested through Wnt signaling-dependent regulation of matrix metalloproteinase-9. ADTRP also hydrolyses fatty acid esters of hydroxy-fatty acids, which have anti-diabetic and anti-inflammatory effects and can control metabolic disorders. Here we summarize and analyze the knowledge on ADTRP and try to decipher its functions in health and disease.


Subject(s)
Blood Coagulation , Coronary Artery Disease/pathology , Membrane Proteins/metabolism , Myocardial Infarction/pathology , Thrombosis/pathology , Coronary Artery Disease/metabolism , Humans , Myocardial Infarction/metabolism , Thrombosis/metabolism
5.
J Am Heart Assoc ; 7(22): e010690, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30571485

ABSTRACT

Background The physiological function of ADTRP (androgen-dependent tissue factor pathway inhibitor regulating protein) is unknown. We previously identified ADTRP as coregulating with and supporting the anticoagulant activity of tissue factor pathway inhibitor in endothelial cells in vitro. Here, we studied the role of ADTRP in vivo, specifically related to vascular development, stability, and function. Methods and Results Genetic inhibition of Adtrp produced vascular malformations in the low-pressure vasculature of zebrafish embryos and newborn mice: dilation/tortuosity, perivascular inflammation, extravascular proteolysis, increased permeability, and microhemorrhages, which produced partially penetrant lethality. Vascular leakiness correlated with decreased endothelial cell junction components VE -cadherin and claudin-5. Changes in hemostasis in young adults comprised modest decrease of tissue factor pathway inhibitor antigen and activity and increased tail bleeding time and volume. Cell-based reporter assays revealed that ADTRP negatively regulates canonical Wnt signaling, affecting membrane events downstream of low-density lipoprotein receptor-related protein 6 ( LRP 6) and upstream of glycogen synthase kinase 3 beta. ADTRP deficiency increased aberrant/ectopic Wnt/ß-catenin signaling in vivo in newborn mice and zebrafish embryos, and upregulated matrix metallopeptidase ( MMP )-9 in endothelial cells and mast cells ( MCs ). Vascular lesions in newborn Adtrp -/- pups displayed accumulation of MCs , decreased extracellular matrix content, and deficient perivascular cell coverage. Wnt-pathway inhibition reversed the increased mmp9 in zebrafish embryos, demonstrating that mmp9 expression induced by Adtrp deficiency was downstream of canonical Wnt signaling. Conclusions Our studies demonstrate that ADTRP plays a major role in vascular development and function, most likely through expression in endothelial cells and/or perivascular cells of Wnt-regulated genes that control vascular stability and integrity.


Subject(s)
Blood Vessels/growth & development , Esterases/physiology , Lipoproteins/physiology , Membrane Proteins/physiology , Neovascularization, Physiologic , Zebrafish Proteins/physiology , Animals , Animals, Newborn/growth & development , Blood Vessels/embryology , Blotting, Western , Esterases/genetics , Female , Fluorescent Antibody Technique , Gene Knockout Techniques , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Real-Time Polymerase Chain Reaction , Zebrafish/embryology , Zebrafish/growth & development , Zebrafish Proteins/genetics
6.
Mol Cell Biochem ; 435(1-2): 67-72, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28497367

ABSTRACT

Insulin resistance is associated with endothelial dysfunction and ensuing cardiovascular diseases in type 2 diabetes mellitus (T2DM) patients. ENPP1 is a key modulator of insulin signaling and its polymorphism, K121Q, increases the potency to competitively inhibit insulin receptor binding. We investigated the association of ENPP1 121Q variant with coronary artery disease (CAD) in patients with and without T2DM in South Indian population. Our study was conducted in 913 subjects: 198 patients with CAD, 284 patients in whom T2DM and CAD co-exists, 160 patients with T2DM and no CAD history, and 271 healthy volunteers. Genotyping was performed using PCR-RFLP and PCR-DNA sequencing. Genotype frequency of ENPP1 121Q was higher in disease groups compared to healthy subjects (p < 0.05). T2DM patients who carried polymorphic AC/CC genotypes were at 12.8-fold enhanced risk to CAD (95% CI 4.97-37.18, p < 0.01). Moreover we observed that 121Q, both in heterozygous and homozygous polymorphic states, was a risk factor for CAD without diabetes (OR 4.15, p < 0.01). 121Q variant was associated with T2DM patients with no CAD history too, but the risk was statistically insignificant after multivariate logistic regression analysis (OR 2.32, p > 0.05). We conclude that ENPP1 121Q variant is associated with increased risk for CAD in patients with T2DM in South Indian population. We also report that 121Q variant of ENPP1 was an independent risk factor for CAD irrespective of diabetic milieu. Factors which enhance insulin resistance increase the risk for onset and progression of coronary atherosclerosis irrespective of a diabetic background.


Subject(s)
Coronary Artery Disease/genetics , Diabetes Mellitus, Type 2/genetics , Diabetic Angiopathies/genetics , Genetic Predisposition to Disease , Mutation, Missense , Phosphoric Diester Hydrolases/genetics , Pyrophosphatases/genetics , Adult , Aged , Aged, 80 and over , Coronary Artery Disease/epidemiology , Diabetes Mellitus, Type 2/epidemiology , Diabetic Angiopathies/epidemiology , Female , Humans , India/epidemiology , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL