Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Signal ; 70: 109592, 2020 06.
Article in English | MEDLINE | ID: mdl-32119913

ABSTRACT

Many studies implicate altered cyclic nucleotide signaling in the pathophysiology of major depressive disorder (MDD), bipolar disorder (BPD), and schizophrenia (SCZ). As such, we explored how phosphodiesterases 2A (PDE2A) and 10A (PDE10A)-enzymes that break down cyclic nucleotides-may be altered in brains of these patients. Using autoradiographic in situ hybridization on postmortem brain tissue from the Stanley Foundation Neuropathology Consortium, we measured expression of PDE2 and PDE10 mRNA in multiple brain regions implicated in psychiatric pathophysiology, including cingulate cortex, orbital frontal cortex (OFC), superior temporal gyrus, hippocampus, parahippocampal cortex, amygdala, and the striatum. We also assessed how PDE2A and PDE10A expression changes in these brain regions across development using the Allen Institute for Brain Science Brainspan database. Compared to controls, patients with SCZ, MDD and BPD all showed reduced PDE2A mRNA in the amygdala. In contrast, PDE2A expression changes in frontal cortical regions were only significant in patients with SCZ, while those in caudal entorhinal cortex, hippocampus, and the striatum were most pronounced in patients with BPD. PDE10A expression was only detected in striatum and did not differ by disease group; however, all groups showed significantly less PDE10A mRNA expression in ventral versus dorsal striatum. Across development, PDE2A mRNA increased in these brain regions; whereas, PDE10A mRNA expression decreased in all regions except striatum. Thus, PDE2A mRNA expression changes in both a disorder- and brain region-specific manner, potentially implicating PDE2A as a novel diagnostic and/or patient-selection biomarker or therapeutic target.


Subject(s)
Aging/metabolism , Bipolar Disorder/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 2/metabolism , Depressive Disorder, Major/metabolism , Phosphoric Diester Hydrolases/metabolism , Schizophrenia/metabolism , Adult , Animals , Biomarkers/metabolism , Brain/metabolism , Brain/pathology , Case-Control Studies , Female , Humans , Male , Mice , Middle Aged , RNA, Messenger/metabolism
2.
Neurobiol Aging ; 65: 217-234, 2018 05.
Article in English | MEDLINE | ID: mdl-29505961

ABSTRACT

3',5'-Cyclic nucleotide phosphodiesterases (PDEs) degrade 3',5' cyclic adenonosine monophosphate (cAMP) and 3',5' cyclic guanosine monophosphate (cGMP), with PDE9A having the highest affinity for cGMP. We show PDE9A6 and 3 novel PDE9 isoforms (PDE9X-100, PDE9X-120, and PDE9X-175) are reliably detected in the brain and lung of mice, whereas PDE9A2 and other isoforms are found elsewhere. PDE9A localizes to the membrane in all organs except the bladder, where it is cytosolic. Brain additionally shows PDE9 in the nuclear fraction. PDE9A mRNA expression/localization dramatically changes across neurodevelopment in a manner that is strikingly consistent between mice and humans (i.e., decreased expression in the hippocampus and cortex and inverted-U in the cerebellum). Study of the 4 PDE9 isoforms in the mouse brain from postnatal day 7 through 24 months similarly identifies dramatic effects of age on expression and subcellular compartmentalization that are isoform specific and brain region specific. Finally, PDE9A mRNA is elevated in the aged human hippocampus with dementia when there is a history of traumatic brain injury. Thus, brain PDE9 is localized to preferentially regulate nuclear- and membrane-proximal pools of cGMP, and its function likely changes across the life span.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/genetics , 3',5'-Cyclic-AMP Phosphodiesterases/metabolism , Aging/genetics , Aging/metabolism , Brain/cytology , Brain/metabolism , Cell Compartmentation/genetics , Gene Expression , Subcellular Fractions/metabolism , Animals , Cyclic GMP/metabolism , Humans , Mice, Inbred C57BL , Mice, Knockout , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Neuroscience ; 335: 151-69, 2016 Oct 29.
Article in English | MEDLINE | ID: mdl-27544407

ABSTRACT

Despite the fact that appropriate social behaviors are vital to thriving in one's environment, little is understood of the molecular mechanisms controlling social behaviors or how social experience sculpts these signaling pathways. Here, we determine if Phosphodiesterase 11A (PDE11A), an enzyme that is enriched in the ventral hippocampal formation (VHIPP) and that breaks down cAMP and cGMP, regulates social behaviors. PDE11 wild-type (WT), heterozygous (HT), and knockout (KO) mice were tested in various social approach assays and gene expression differences were measured by RNA sequencing. The effect of social isolation on PDE11A4 compartmentalization and subsequent social interactions and social memory was also assessed. Deletion of PDE11A triggered age- and sex-dependent deficits in social approach in specific social contexts but not others. Mice appear to detect altered social behaviors of PDE11A KO mice, because C57BL/6J mice prefer to spend time with a sex-matched PDE11A WT vs. its KO littermate; whereas, a PDE11A KO prefers to spend time with a novel PDE11A KO vs. its WT littermate. Not only is PDE11A required for intact social interactions, we found that 1month of social isolation vs. group housing decreased PDE11A4 protein expression specifically within the membrane fraction of VHIPP. This isolation-induced decrease in PDE11A4 expression appears functional because social isolation impairs subsequent social approach behavior and social memory in a PDE11A genotype-dependent manner. Pathway analyses following RNA sequencing suggests PDE11A is a key regulator of the oxytocin pathway and membrane signaling, consistent with its pivotal role in regulating social behavior.


Subject(s)
3',5'-Cyclic-GMP Phosphodiesterases/metabolism , Brain/metabolism , Memory/physiology , Social Behavior , Animals , Genotype , Mice, Inbred C57BL , Mice, Knockout , Oxytocin/metabolism , Signal Transduction/physiology
4.
Neuropsychopharmacology ; 41(12): 2920-2931, 2016 11.
Article in English | MEDLINE | ID: mdl-27339393

ABSTRACT

The capacity to form long-lasting social memories is critical to our health and survival. cAMP signaling in the ventral hippocampal formation (VHIPP) appears to be required for social memory formation, but the phosphodiesterase (PDE) involved remains unknown. Previously, we showed that PDE11A, which degrades cAMP and cGMP, is preferentially expressed in CA1 and subiculum of the VHIPP. Here, we determine whether PDE11A is expressed in neurons where it could directly influence synaptic plasticity and whether expression is required for the consolidation and/or retrieval of social memories. In CA1, and possibly CA2, PDE11A4 is expressed throughout neuronal cell bodies, dendrites (stratum radiatum), and axons (fimbria), but not astrocytes. Unlike PDE2A, PDE9A, or PDE10A, PDE11A4 expression begins very low at postnatal day 7 (P7) and dramatically increases until P28, at which time it stabilizes to young adult levels. This expression pattern is consistent with the fact that PDE11A is required for social long-term memory (LTM) formation during adolescence and adulthood. Male and female PDE11 knockout (KO) mice show normal short-term memory (STM) for social odor recognition (SOR) and social transmission of food preference (STFP), but no LTM 24 h post training. Importantly, PDE11A KO mice show normal LTM for nonsocial odor recognition. Deletion of PDE11A may impair memory consolidation by impairing requisite protein translation in the VHIPP. Relative to WT littermates, PDE11A KO mice show reduced expression of RSK2 and lowered phosphorylation of S6 (pS6-235/236). Together, these data suggest PDE11A is selectively required for the proper consolidation of recognition and associative social memories.


Subject(s)
3',5'-Cyclic-GMP Phosphodiesterases/metabolism , Hippocampus/cytology , Memory/physiology , Neurons/physiology , Social Behavior , 3',5'-Cyclic-GMP Phosphodiesterases/genetics , Animals , Animals, Newborn , Food Preferences , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/cytology , Odorants , RNA, Messenger/metabolism , Recognition, Psychology , Ribosomal Protein S6/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...