Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
NPJ Precis Oncol ; 8(1): 104, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760413

ABSTRACT

Therapeutic approaches targeting proteins on the surface of cancer cells have emerged as an important strategy for precision oncology. To capitalize on the potential impact of drugs targeting surface proteins, detailed knowledge about the expression patterns of the target proteins in tumor tissues is required. In castration-resistant prostate cancer (CRPC), agents targeting prostate-specific membrane antigen (PSMA) have demonstrated clinical activity. However, PSMA expression is lost in a significant number of CRPC tumors. The identification of additional cell surface targets is necessary to develop new therapeutic approaches. Here, we performed a comprehensive analysis of the expression heterogeneity and co-expression patterns of trophoblast cell-surface antigen 2 (TROP2), delta-like ligand 3 (DLL3), and carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) in CRPC samples from a rapid autopsy cohort. We show that DLL3 and CEACAM5 exhibit the highest expression in neuroendocrine prostate cancer (NEPC), while TROP2 is expressed across different CRPC molecular subtypes, except for NEPC. We further demonstrated that AR alterations were associated with higher expression of PSMA and TROP2. Conversely, PSMA and TROP2 expression was lower in RB1-altered tumors. In addition to genomic alterations, we show a tight correlation between epigenetic states, particularly histone H3 lysine 27 methylation (H3K27me3) at the transcriptional start site and gene body of TACSTD2 (encoding TROP2), DLL3, and CEACAM5, and their respective protein expression in CRPC patient-derived xenografts. Collectively, these findings provide insights into patterns and determinants of expression of TROP2, DLL3, and CEACAM5 with implications for the clinical development of cell surface targeting agents in CRPC.

2.
bioRxiv ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38645034

ABSTRACT

Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)--a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival. To understand how lineage markers vary across the evolution of lineage plasticity in prostate cancer, we applied single cell analyses to 21 human prostate tumor biopsies and two genetically engineered mouse models, together with tissue microarray analysis (TMA) on 131 tumor samples. Not only did we observe a higher degree of phenotypic heterogeneity in castrate-resistant PRAD and NEPC than previously anticipated, but also found that the expression of molecules targeted therapeutically, namely PSMA, STEAP1, STEAP2, TROP2, CEACAM5, and DLL3, varied within a subset of gene-regulatory networks (GRNs). We also noted that NEPC and small cell lung cancer (SCLC) subtypes shared a set of GRNs, indicative of conserved biologic pathways that may be exploited therapeutically across tumor types. While this extreme level of transcriptional heterogeneity, particularly in cell surface marker expression, may mitigate the durability of clinical responses to novel antigen-directed therapies, its delineation may yield signatures for patient selection in clinical trials, potentially across distinct cancer types.

3.
J Pathol ; 262(1): 105-120, 2024 01.
Article in English | MEDLINE | ID: mdl-37850574

ABSTRACT

HOXB13 is a key lineage homeobox transcription factor that plays a critical role in the differentiation of the prostate gland. Several studies have suggested that HOXB13 alterations may be involved in prostate cancer development and progression. Despite its potential biological relevance, little is known about the expression of HOXB13 across the disease spectrum of prostate cancer. To this end, we validated a HOXB13 antibody using genetic controls and investigated HOXB13 protein expression in murine and human developing prostates, localized prostate cancers, and metastatic castration-resistant prostate cancers. We observed that HOXB13 expression increases during later stages of murine prostate development. All localized prostate cancers showed HOXB13 protein expression. Interestingly, lower HOXB13 expression levels were observed in higher-grade tumors, although no significant association between HOXB13 expression and recurrence or disease-specific survival was found. In advanced metastatic prostate cancers, HOXB13 expression was retained in the majority of tumors. While we observed lower levels of HOXB13 protein and mRNA levels in tumors with evidence of lineage plasticity, 84% of androgen receptor-negative castration-resistant prostate cancers and neuroendocrine prostate cancers (NEPCs) retained detectable levels of HOXB13. Notably, the reduced expression observed in NEPCs was associated with a gain of HOXB13 gene body CpG methylation. In comparison to the commonly used prostate lineage marker NKX3.1, HOXB13 showed greater sensitivity in detecting advanced metastatic prostate cancers. Additionally, in a cohort of 837 patients, 383 with prostatic and 454 with non-prostatic tumors, we found that HOXB13 immunohistochemistry had a 97% sensitivity and 99% specificity for prostatic origin. Taken together, our studies provide valuable insight into the expression pattern of HOXB13 during prostate development and cancer progression. Furthermore, our findings support the utility of HOXB13 as a diagnostic biomarker for prostate cancer, particularly to confirm the prostatic origin of advanced metastatic castration-resistant tumors. © 2023 The Pathological Society of Great Britain and Ireland.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Animals , Humans , Male , Mice , Genes, Homeobox , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Prostate/pathology , Prostatic Neoplasms/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , United Kingdom
4.
Sci Transl Med ; 15(707): eadf7006, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37531417

ABSTRACT

In lung and prostate adenocarcinomas, neuroendocrine (NE) transformation to an aggressive derivative resembling small cell lung cancer (SCLC) is associated with poor prognosis. We previously described dependency of SCLC on the nuclear transporter exportin 1. Here, we explored the role of exportin 1 in NE transformation. We observed up-regulated exportin 1 in lung and prostate pretransformation adenocarcinomas. Exportin 1 was up-regulated after genetic inactivation of TP53 and RB1 in lung and prostate adenocarcinoma cell lines, accompanied by increased sensitivity to the exportin 1 inhibitor selinexor in vitro. Exportin 1 inhibition prevented NE transformation in different TP53/RB1-inactivated prostate adenocarcinoma xenograft models that acquire NE features upon treatment with the aromatase inhibitor enzalutamide and extended response to the EGFR inhibitor osimertinib in a lung cancer transformation patient-derived xenograft (PDX) model exhibiting combined adenocarcinoma/SCLC histology. Ectopic SOX2 expression restored the enzalutamide-promoted NE phenotype on adenocarcinoma-to-NE transformation xenograft models despite selinexor treatment. Selinexor sensitized NE-transformed lung and prostate small cell carcinoma PDXs to standard cytotoxics. Together, these data nominate exportin 1 inhibition as a potential therapeutic target to constrain lineage plasticity and prevent or treat NE transformation in lung and prostate adenocarcinoma.


Subject(s)
Adenocarcinoma , Lung Neoplasms , Prostatic Neoplasms , SOXB1 Transcription Factors , Small Cell Lung Carcinoma , Humans , Male , Adenocarcinoma/pathology , Down-Regulation , Lung Neoplasms/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Small Cell Lung Carcinoma/genetics , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Animals , Exportin 1 Protein
5.
Nat Cell Biol ; 25(9): 1346-1358, 2023 09.
Article in English | MEDLINE | ID: mdl-37591951

ABSTRACT

Small cell lung cancer (SCLC) exists broadly in four molecular subtypes: ASCL1, NEUROD1, POU2F3 and Inflammatory. Initially, SCLC subtypes were thought to be mutually exclusive, but recent evidence shows intra-tumoural subtype heterogeneity and plasticity between subtypes. Here, using a CRISPR-based autochthonous SCLC genetically engineered mouse model to study the consequences of KDM6A/UTX inactivation, we show that KDM6A inactivation induced plasticity from ASCL1 to NEUROD1 resulting in SCLC tumours that express both ASCL1 and NEUROD1. Mechanistically, KDM6A normally maintains an active chromatin state that favours the ASCL1 subtype with its loss decreasing H3K4me1 and increasing H3K27me3 at enhancers of neuroendocrine genes leading to a cell state that is primed for ASCL1-to-NEUROD1 subtype switching. This work identifies KDM6A as an epigenetic regulator that controls ASCL1 to NEUROD1 subtype plasticity and provides an autochthonous SCLC genetically engineered mouse model to model ASCL1 and NEUROD1 subtype heterogeneity and plasticity, which is found in 35-40% of human SCLCs.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Animals , Mice , Small Cell Lung Carcinoma/genetics , Histone Demethylases/genetics , Chromatin , Epigenomics , Lung Neoplasms/genetics
6.
Nat Commun ; 14(1): 2041, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37041154

ABSTRACT

Six transmembrane epithelial antigen of the prostate 1 (STEAP1) is a cell surface antigen for therapeutic targeting in prostate cancer. Here, we report broad expression of STEAP1 relative to prostate-specific membrane antigen (PSMA) in lethal metastatic prostate cancers and the development of a STEAP1-directed chimeric antigen receptor (CAR) T cell therapy. STEAP1 CAR T cells demonstrate reactivity in low antigen density, antitumor activity across metastatic prostate cancer models, and safety in a human STEAP1 knock-in mouse model. STEAP1 antigen escape is a recurrent mechanism of treatment resistance and is associated with diminished tumor antigen processing and presentation. The application of tumor-localized interleukin-12 (IL-12) therapy in the form of a collagen binding domain (CBD)-IL-12 fusion protein combined with STEAP1 CAR T cell therapy enhances antitumor efficacy by remodeling the immunologically cold tumor microenvironment of prostate cancer and combating STEAP1 antigen escape through the engagement of host immunity and epitope spreading.


Subject(s)
Prostatic Neoplasms , Receptors, Chimeric Antigen , Male , Mice , Animals , Humans , T-Lymphocytes , Interleukin-12 , Cell Line, Tumor , Prostatic Neoplasms/pathology , Immunotherapy , Tumor Microenvironment , Antigens, Neoplasm , Oxidoreductases
7.
JCI Insight ; 8(7)2023 04 10.
Article in English | MEDLINE | ID: mdl-36821396

ABSTRACT

Prostate-specific membrane antigen (PSMA) is an important cell surface target in prostate cancer. There are limited data on the heterogeneity of PSMA tissue expression in metastatic castration-resistant prostate cancer (mCRPC). Furthermore, the mechanisms regulating PSMA expression (encoded by the FOLH1 gene) are not well understood. Here, we demonstrate that PSMA expression is heterogeneous across different metastatic sites and molecular subtypes of mCRPC. In a rapid autopsy cohort in which multiple metastatic sites per patient were sampled, we found that 13 of 52 (25%) cases had no detectable PSMA and 23 of 52 (44%) cases showed heterogeneous PSMA expression across individual metastases, with 33 (63%) cases harboring at least 1 PSMA-negative site. PSMA-negative tumors displayed distinct transcriptional profiles with expression of druggable targets such as MUC1. Loss of PSMA was associated with epigenetic changes of the FOLH1 locus, including gain of CpG methylation and loss of histone 3 lysine 27 (H3K27) acetylation. Treatment with histone deacetylase (HDAC) inhibitors reversed this epigenetic repression and restored PSMA expression in vitro and in vivo. Collectively, these data provide insights into the expression patterns and regulation of PSMA in mCRPC and suggest that epigenetic therapies - in particular, HDAC inhibitors - can be used to augment PSMA levels.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/metabolism , Treatment Outcome , Prostate-Specific Antigen , Histone Deacetylase Inhibitors
8.
Am J Pathol ; 193(1): 4-10, 2023 01.
Article in English | MEDLINE | ID: mdl-36309102

ABSTRACT

Basal cell carcinoma (BCC) of the prostate is a rare tumor. Compared with the more common acinar adenocarcinoma (AAC) of the prostate, BCCs show features of basal cell differentiation and are thought to be biologically distinct from AAC. The spectrum of molecular alterations of BCC has not been comprehensively described, and genomic studies are lacking. Herein, whole genome sequencing was performed on archival formalin-fixed, paraffin-embedded specimens of two cases with BCC. Prostatic BCCs were characterized by an overall low copy number and mutational burden. Recurrent copy number loss of chromosome 16 was observed. In addition, putative driver gene alterations in KIT, DENND3, PTPRU, MGA, and CYLD were identified. Mechanistically, depletion of the CYLD protein resulted in increased proliferation of prostatic basal cells in vitro. Collectively, these studies show that prostatic BCC displays distinct genomic alterations from AAC and highlight a potential role for loss of chromosome 16 in the pathogenesis of this rare tumor type.


Subject(s)
Carcinoma, Basal Cell , Prostatic Neoplasms , Skin Neoplasms , Male , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostate/pathology , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/pathology , Skin Neoplasms/pathology , Genomics , Receptor-Like Protein Tyrosine Phosphatases, Class 2 , Guanine Nucleotide Exchange Factors
9.
Prostate Cancer Prostatic Dis ; 26(1): 194-200, 2023 03.
Article in English | MEDLINE | ID: mdl-36564459

ABSTRACT

BACKGROUND: Bipolar androgen therapy (BAT) results in rapid fluctuation of testosterone (T) between near-castrate and supraphysiological levels and has shown promise in metastatic castration-resistant prostate cancer (mCRPC). Its clinical effects may be mediated through induction of DNA damage, and preclinical studies suggest synergy with PARP inhibitors. PATIENTS AND METHODS: This was a single-center, Phase II trial testing olaparib plus BAT (T cypionate/enanthate 400 mg every 28 days) with ongoing androgen deprivation. Planned recruitment was 30 subjects (equal proportions with/without homologous recombination repair [HRR] gene mutations) with mCRPC post abiraterone and/or enzalutamide. The primary objective was to determine PSA50 response (PSA decline ≥50% from baseline) rate at 12-weeks. The primary analysis utilized the entire (intent-to-treat [ITT]) cohort, with those dropping out early counted as non-responders. Secondary/exploratory analyses were in those treated beyond 12-weeks (response-evaluable cohort). RESULTS: Thirty-six patients enrolled and 6 discontinued prior to response assessment. In the ITT cohort, PSA50 response rate at 12-weeks was 11/36 (31%; 95% CI 17-48%), and 16/36 (44%, 95% CI 28-62%) had a PSA50 response at any time on-study. After a median follow-up of 19 months, the median clinical/radiographic progression-free survival in the ITT cohort was 13.0 months (95% CI 7-17). Clinical outcomes were similar regardless of HRR gene mutational status. CONCLUSIONS: BAT plus olaparib is associated with high response rates and long PFS. Clinical benefit was observed regardless of HRR gene mutational status.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Androgens/therapeutic use , Treatment Outcome , Prostate-Specific Antigen/therapeutic use , Androgen Antagonists/therapeutic use , Nitriles/therapeutic use
10.
Res Sq ; 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38196594

ABSTRACT

Therapeutic approaches targeting proteins on the surface of cancer cells have emerged as an important strategy for precision oncology. To fully capitalize on the potential impact of drugs targeting surface proteins, detailed knowledge about the expression patterns of the target proteins in tumor tissues is required. In castration-resistant prostate cancer (CRPC), agents targeting prostate-specific membrane antigen (PSMA) have demonstrated clinical activity. However, PSMA expression is lost in a significant number of CRPC tumors, and the identification of additional cell surface targets is necessary in order to develop new therapeutic approaches. Here, we performed a comprehensive analysis of the expression and co-expression patterns of trophoblast cell-surface antigen 2 (TROP2), delta-like ligand 3 (DLL3), and carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) in CRPC samples from a rapid autopsy cohort. We show that DLL3 and CEACAM5 exhibit the highest expression in neuroendocrine prostate cancer (NEPC), while TROP2 is expressed across different CRPC molecular subtypes, except for NEPC. We observed variable intra-tumoral and inter-tumoral heterogeneity and no dominant metastatic site predilections for TROP2, DLL3, and CEACAM5. We further show that AR amplifications were associated with higher expression of PSMA and TROP2 but lower DLL3 and CEACAM5 levels. Conversely, PSMA and TROP2 expression was lower in RB1-altered tumors. In addition to genomic alterations, we demonstrate a tight correlation between epigenetic states, particularly histone H3 lysine 27 methylation (H3K27me3) at the transcriptional start site and gene body of TACSTD2 (encoding TROP2), DLL3, and CEACAM5, and their respective protein expression in CRPC patient-derived xenografts. Collectively, these findings provide novel insights into the patterns and determinants of expression of TROP2, DLL3, and CEACAM5 with important implications for the clinical development of cell surface targeting agents in CRPC.

11.
Cancer Res Commun ; 2(5): 277-285, 2022 05.
Article in English | MEDLINE | ID: mdl-36337169

ABSTRACT

Anaplastic lymphoma kinase (ALK) is a tyrosine kinase with genomic and expression changes in many solid tumors. ALK inhibition is first line therapy for lung cancers with ALK alterations, and an effective therapy in other tumor types, but has not been well-studied in prostate cancer. Here, we aim to delineate the role of ALK genomic and expression changes in primary and metastatic prostate cancer. We determined ALK expression by immunohistochemistry and RNA-Seq, and genomic alterations by NGS. We assessed functional consequences of ALK overexpression and pharmacological ALK inhibition by cell proliferation and cell viability assays. Among 372 primary prostate cancer cases we identified one case with uniformly high ALK protein expression. Genomic analysis revealed a SLC45A3-ALK fusion which promoted oncogenesis in in vitro assays. We observed ALK protein expression in 5/52 (9%) of metastatic prostate cancer cases, of which 4 of 5 had neuroendocrine features. ALK-expressing neuroendocrine prostate cancer had a distinct transcriptional program, and earlier disease progression. An ALK-expressing neuroendocrine prostate cancer model was sensitive to pharmacological ALK inhibition. In summary, we found that ALK overexpression is rare in primary prostate cancer, but more frequent in metastatic prostate cancers with neuroendocrine differentiation. Further, ALK fusions similar to lung cancer are an occasional driver in prostate cancer. Our data suggest that ALK-directed therapies could be an option in selected patients with advanced prostate cancer.


Subject(s)
Lung Neoplasms , Prostatic Neoplasms , Male , Humans , Anaplastic Lymphoma Kinase/genetics , Protein Kinase Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Protein-Tyrosine Kinases/genetics , Prostatic Neoplasms/drug therapy
12.
Hum Pathol ; 130: 18-24, 2022 12.
Article in English | MEDLINE | ID: mdl-36309296

ABSTRACT

Genomic studies have demonstrated a high level of intra-tumoral heterogeneity in prostate cancer. There is strong evidence suggesting that individual tumor foci can arise as genetically distinct, clonally independent lesions. However, recent studies have also demonstrated that adjacent Gleason pattern (GP) 3 and GP4 lesions can originate from the same clone but follow divergent genetic and morphologic evolution. The clonal relationship of adjacent GP3 and GP5 lesions has thus far not been investigated. Here we analyzed a cohort of 14 cases-11 biopsy and 3 radical prostatectomy specimens-with a Gleason score of 3 + 5 = 8 or 5 + 3 = 8 present in the same biopsy or in a single dominant tumor nodule at radical prostatectomy. Clonal and subclonal relationships between GP3 and GP5 lesions were assessed using genetically validated immunohistochemical assays for ERG, PTEN, and P53. 9/14 (64%) cases showed ERG reactivity in both GP3 and GP5 lesions. Only 1/14 (7%) cases showed a discordant pattern with ERG staining present only in GP3. PTEN expression was lost in 2/14 (14%) cases with perfect concordance between GP5 and GP3. P53 nuclear reactivity was present in 1/14 (7%) case in both GP5 and GP3. This study provides first evidence that the majority of adjacent GP3 and GP5 lesions share driver alterations and are clonally related. In addition, we observed a lower-than-expected rate of PTEN loss in GP5 in the context of Gleason score 3 + 5 = 8 or 5 + 3 = 8 tumors.


Subject(s)
Prostatic Neoplasms , Tumor Suppressor Protein p53 , Male , Humans , Tumor Suppressor Protein p53/genetics , Neoplasm Grading , Prostatectomy , Prostate/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/surgery , Prostatic Neoplasms/pathology
13.
Nat Commun ; 13(1): 5345, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36109521

ABSTRACT

The androgen receptor (AR) signaling inhibitor enzalutamide (enza) is one of the principal treatments for metastatic castration-resistant prostate cancer (CRPC). Several emergent enza clinical resistance mechanisms have been described, including lineage plasticity in which the tumors manifest reduced dependency on the AR. To improve our understanding of enza resistance, herein we analyze the transcriptomes of matched biopsies from men with metastatic CRPC obtained prior to treatment and at progression (n = 21). RNA-sequencing analysis demonstrates that enza does not induce marked, sustained changes in the tumor transcriptome in most patients. However, three patients' progression biopsies show evidence of lineage plasticity. The transcription factor E2F1 and pathways linked to tumor stemness are highly activated in baseline biopsies from patients whose tumors undergo lineage plasticity. We find a gene signature enriched in these baseline biopsies that is strongly associated with poor survival in independent patient cohorts and with risk of castration-induced lineage plasticity in patient-derived xenograft models, suggesting that tumors harboring this gene expression program may be at particular risk for resistance mediated by lineage plasticity and poor outcomes.


Subject(s)
E2F1 Transcription Factor , Prostatic Neoplasms, Castration-Resistant , Androgen Receptor Antagonists/pharmacology , Benzamides , Biopsy , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , E2F1 Transcription Factor/metabolism , Humans , Male , Nitriles , Phenylthiohydantoin , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , RNA , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
14.
Clin Cancer Res ; 28(16): 3509-3525, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35695870

ABSTRACT

PURPOSE: Therapies targeting the androgen receptor (AR) have improved the outcome for patients with castration-sensitive prostate cancer (CSPC). Expression of the constitutively active AR splice variant-7 (AR-V7) has shown clinical utility as a predictive biomarker of AR-targeted therapy resistance in castration-resistant prostate cancer (CRPC), but its importance in CSPC remains understudied. EXPERIMENTAL DESIGN: We assessed different approaches to quantify AR-V7 mRNA and protein in prostate cancer cell lines, patient-derived xenograft (PDX) models, publicly available cohorts, and independent institutional clinical cohorts, to identify reliable approaches for detecting AR-V7 mRNA and protein and its association with clinical outcome. RESULTS: In CSPC and CRPC cohorts, AR-V7 mRNA was much less abundant when detected using reads across splice boundaries than when considering isoform-specific exonic reads. The RM7 AR-V7 antibody had increased sensitivity and specificity for AR-V7 protein detection by immunohistochemistry (IHC) in CRPC cohorts but rarely identified AR-V7 protein reactivity in CSPC cohorts, when compared with the EPR15656 AR-V7 antibody. Using multiple CRPC PDX models, we demonstrated that AR-V7 expression was exquisitely sensitive to hormonal manipulation. In CSPC institutional cohorts, AR-V7 protein quantification by either assay was associated neither with time to development of castration resistance nor with overall survival, and intense neoadjuvant androgen-deprivation therapy did not lead to significant AR-V7 mRNA or staining following treatment. Neither pre- nor posttreatment AR-V7 levels were associated with volumes of residual disease after therapy. CONCLUSIONS: This study demonstrates that further analytical validation and clinical qualification are required before AR-V7 can be considered for clinical use in CSPC as a predictive biomarker.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Androgen Antagonists/therapeutic use , Biomarkers , Castration , Humans , Male , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
15.
Nat Commun ; 12(1): 5775, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34599169

ABSTRACT

Neuroendocrine carcinomas (NEC) are tumors expressing markers of neuronal differentiation that can arise at different anatomic sites but have strong histological and clinical similarities. Here we report the chromatin landscapes of a range of human NECs and show convergence to the activation of a common epigenetic program. With a particular focus on treatment emergent neuroendocrine prostate cancer (NEPC), we analyze cell lines, patient-derived xenograft (PDX) models and human clinical samples to show the existence of two distinct NEPC subtypes based on the expression of the neuronal transcription factors ASCL1 and NEUROD1. While in cell lines and PDX models these subtypes are mutually exclusive, single-cell analysis of human clinical samples exhibits a more complex tumor structure with subtypes coexisting as separate sub-populations within the same tumor. These tumor sub-populations differ genetically and epigenetically contributing to intra- and inter-tumoral heterogeneity in human metastases. Overall, our results provide a deeper understanding of the shared clinicopathological characteristics shown by NECs. Furthermore, the intratumoral heterogeneity of human NEPCs suggests the requirement of simultaneous targeting of coexisting tumor populations as a therapeutic strategy.


Subject(s)
Carcinoma, Neuroendocrine/genetics , Prostatic Neoplasms/genetics , Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Chromatin/genetics , Chromatin/metabolism , Epigenesis, Genetic/genetics , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , Humans , Male , Transcription Factors/genetics
16.
Prostate ; 81(15): 1159-1171, 2021 11.
Article in English | MEDLINE | ID: mdl-34402095

ABSTRACT

BACKGROUND: Resistance to androgen deprivation therapies is a major driver of mortality in advanced prostate cancer. Therefore, there is a need to develop new preclinical models that allow the investigation of resistance mechanisms and the assessment of drugs for the treatment of castration-resistant prostate cancer. METHODS: We generated two novel cell line models (LAPC4-CR and VCaP-CR) which were derived by passaging LAPC4 and VCaP cells in vivo and in vitro under castrate conditions. We performed detailed transcriptomic (RNA-seq) and proteomic analyses (SWATH-MS) to delineate expression differences between castration-sensitive and castration-resistant cell lines. Furthermore, we characterized the in vivo and in vitro growth characteristics of these novel cell line models. RESULTS: The two cell line derivatives LAPC4-CR and VCaP-CR showed castration-resistant growth in vitro and in vivo which was only minimally inhibited by AR antagonists, enzalutamide, and bicalutamide. High-dose androgen treatment resulted in significant growth arrest of VCaP-CR but not in LAPC4-CR cells. Both cell lines maintained AR expression, but exhibited distinct expression changes on the mRNA and protein level. Integrated analyses including data from LNCaP and the previously described castration-resistant LNCaP-abl cells revealed an expression signature of castration resistance. CONCLUSIONS: The two novel cell line models LAPC4-CR and VCaP-CR and their comprehensive characterization on the RNA and protein level represent important resources to study the molecular mechanisms of castration resistance.


Subject(s)
Prostatic Neoplasms, Castration-Resistant/pathology , Animals , Cell Line, Tumor , Cell Proliferation , Humans , Male , Phenotype
17.
JCI Insight ; 6(8)2021 04 22.
Article in English | MEDLINE | ID: mdl-33724955

ABSTRACT

Resistance to AR signaling inhibitors (ARSis) in a subset of metastatic castration-resistant prostate cancers (mCRPCs) occurs with the emergence of AR- neuroendocrine prostate cancer (NEPC) coupled with mutations/deletions in PTEN, TP53, and RB1 and the overexpression of DNMTs, EZH2, and/or SOX2. To resolve whether the lack of AR is the driving factor for the emergence of the NE phenotype, molecular, cell, and tumor biology analyses were performed on 23 xenografts derived from patients with PC, recapitulating the full spectrum of genetic alterations proposed to drive NE differentiation. Additionally, phenotypic response to CRISPR/Cas9-mediated AR KO in AR+ CRPC cells was evaluated. These analyses document that (a) ARSi-resistant NEPC developed without androgen deprivation treatment; (b) ARS in ARSi-resistant AR+/NE+ double-positive "amphicrine" mCRPCs did not suppress NE differentiation; (c) the lack of AR expression did not necessitate acquiring a NE phenotype, despite concomitant mutations/deletions in PTEN and TP53, and the loss of RB1 but occurred via emergence of an AR-/NE- double-negative PC (DNPC); (d) despite DNPC cells having homogeneous genetic driver mutations, they were phenotypically heterogeneous, expressing basal lineage markers alone or in combination with luminal lineage markers; and (e) AR loss was associated with AR promoter hypermethylation in NEPCs but not in DNPCs.


Subject(s)
Carcinoma, Neuroendocrine/genetics , Cell Transformation, Neoplastic/genetics , Drug Resistance, Neoplasm/genetics , Prostatic Neoplasms, Castration-Resistant/genetics , Abiraterone Acetate/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , Benzamides/therapeutic use , Carcinoma, Neuroendocrine/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Male , Mice , Neoplasm Transplantation , Nitriles/therapeutic use , PTEN Phosphohydrolase/genetics , Phenylthiohydantoin/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/genetics , Retinoblastoma Binding Proteins/genetics , SOXB1 Transcription Factors/genetics , Thiohydantoins/therapeutic use , Tumor Suppressor Protein p53/genetics , Ubiquitin-Protein Ligases/genetics
18.
Nat Cancer ; 2(8): 803-818, 2021 08.
Article in English | MEDLINE | ID: mdl-35122025

ABSTRACT

Unlike several other tumor types, prostate cancer rarely responds to immune checkpoint blockade (ICB). To define tumor cell intrinsic factors that contribute to prostate cancer progression and resistance to ICB, we analyzed prostate cancer epithelial cells from castration-sensitive and -resistant samples using implanted tumors, cell lines, transgenic models and human tissue. We found that castration resulted in increased expression of interleukin-8 (IL-8) and its probable murine homolog Cxcl15 in prostate epithelial cells. We showed that these chemokines drove subsequent intratumoral infiltration of tumor-promoting polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), which was largely abrogated when IL-8 signaling was blocked genetically or pharmacologically. Targeting IL-8 signaling in combination with ICB delayed the onset of castration resistance and increased the density of polyfunctional CD8 T cells in tumors. Our findings establish a novel mechanism by which castration mediates IL-8 secretion and subsequent PMN-MDSC infiltration, and highlight blockade of the IL-8/CXCR2 axis as a potential therapeutic intervention.


Subject(s)
Myeloid-Derived Suppressor Cells , Prostatic Neoplasms , Animals , Castration , Humans , Interleukin-8/genetics , Male , Mice , Prostate , Prostatic Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...