Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(22): e2317230121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38768344

ABSTRACT

Efforts to develop an HIV-1 vaccine include those focusing on conserved structural elements as the target of broadly neutralizing monoclonal antibodies. MAb D5 binds to a highly conserved hydrophobic pocket on the gp41 N-heptad repeat (NHR) coiled coil and neutralizes through prevention of viral fusion and entry. Assessment of 17-mer and 36-mer NHR peptides presenting the D5 epitope in rodent immunogenicity studies showed that the longer peptide elicited higher titers of neutralizing antibodies, suggesting that neutralizing epitopes outside of the D5 pocket may exist. Although the magnitude and breadth of neutralization elicited by NHR-targeting antigens are lower than that observed for antibodies directed to other epitopes on the envelope glycoprotein complex, it has been shown that NHR-directed antibodies are potentiated in TZM-bl cells containing the FcγRI receptor. Herein, we report the design and evaluation of covalently stabilized trimeric 51-mer peptides encompassing the complete gp41 NHR. We demonstrate that these peptide trimers function as effective antiviral entry inhibitors and retain the ability to present the D5 epitope. We further demonstrate in rodent and nonhuman primate immunization studies that our 51-mer constructs elicit a broader repertoire of neutralizing antibody and improved cross-clade neutralization of primary HIV-1 isolates relative to 17-mer and 36-mer NHR peptides in A3R5 and FcγR1-enhanced TZM-bl assays. These results demonstrate that sensitive neutralization assays can be used for structural enhancement of moderately potent neutralizing epitopes. Finally, we present expanded trimeric peptide designs which include unique low-molecular-weight scaffolds that provide versatility in our immunogen presentation strategy.


Subject(s)
AIDS Vaccines , Antibodies, Neutralizing , HIV Antibodies , HIV Envelope Protein gp41 , HIV-1 , HIV Envelope Protein gp41/immunology , HIV Envelope Protein gp41/chemistry , HIV-1/immunology , Animals , AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , Humans , Mice , Epitopes/immunology , HIV Infections/immunology , HIV Infections/prevention & control , HIV Infections/virology , Peptides/immunology , Peptides/chemistry , Female , Antibodies, Monoclonal/immunology
2.
Nat Commun ; 10(1): 4153, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31515478

ABSTRACT

Respiratory syncytial virus (RSV) infection is the leading cause of hospitalization and infant mortality under six months of age worldwide; therefore, the prevention of RSV infection in all infants represents a significant unmet medical need. Here we report the isolation of a potent and broadly neutralizing RSV monoclonal antibody derived from a human memory B-cell. This antibody, RB1, is equipotent on RSV A and B subtypes, potently neutralizes a diverse panel of clinical isolates in vitro and demonstrates in vivo protection. It binds to a highly conserved epitope in antigenic site IV of the RSV fusion glycoprotein. RB1 is the parental antibody to MK-1654 which is currently in clinical development for the prevention of RSV infection in infants.


Subject(s)
Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , Conserved Sequence , Glycoproteins/immunology , Respiratory Syncytial Virus, Human/immunology , Viral Fusion Proteins/immunology , Animals , Antibodies, Monoclonal/isolation & purification , B-Lymphocytes/immunology , Binding Sites , Disease Models, Animal , Epitopes/immunology , Female , Humans , Immunologic Memory , Models, Molecular , Protein Binding , Sigmodontinae
3.
J Med Chem ; 60(23): 9676-9690, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29156136

ABSTRACT

The discovery of a potent selective low dose Janus kinase 1 (JAK1) inhibitor suitable for clinical evaluation is described. As part of an overall goal to minimize dose, we pursued a medicinal chemistry strategy focused on optimization of key parameters that influence dose size, including lowering human Clint and increasing intrinsic potency, bioavailability, and solubility. To impact these multiple parameters simultaneously, we used lipophilic ligand efficiency as a key metric to track changes in the physicochemical properties of our analogs, which led to improvements in overall compound quality. In parallel, structural information guided advancements in JAK1 selectivity by informing on new vector space, which enabled the discovery of a unique key amino acid difference between JAK1 (Glu966) and JAK2 (Asp939). This difference was exploited to consistently produce analogs with the best balance of JAK1 selectivity, efficacy, and projected human dose, ultimately culminating in the discovery of compound 28.


Subject(s)
Janus Kinase 1/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology , Animals , Dogs , Drug Discovery , Halogenation , Humans , Janus Kinase 1/chemistry , Janus Kinase 1/metabolism , Molecular Docking Simulation , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacokinetics , Pyrazoles/administration & dosage , Pyrazoles/pharmacokinetics , Rats , Structure-Activity Relationship
4.
Nat Struct Mol Biol ; 24(7): 570-577, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28581512

ABSTRACT

Clinical studies indicate that partial agonists of the G-protein-coupled, free fatty acid receptor 1 GPR40 enhance glucose-dependent insulin secretion and represent a potential mechanism for the treatment of type 2 diabetes mellitus. Full allosteric agonists (AgoPAMs) of GPR40 bind to a site distinct from partial agonists and can provide additional efficacy. We report the 3.2-Å crystal structure of human GPR40 (hGPR40) in complex with both the partial agonist MK-8666 and an AgoPAM, which exposes a novel lipid-facing AgoPAM-binding pocket outside the transmembrane helical bundle. Comparison with an additional 2.2-Å structure of the hGPR40-MK-8666 binary complex reveals an induced-fit conformational coupling between the partial agonist and AgoPAM binding sites, involving rearrangements of the transmembrane helices 4 and 5 (TM4 and TM5) and transition of the intracellular loop 2 (ICL2) into a short helix. These conformational changes likely prime GPR40 to a more active-like state and explain the binding cooperativity between these ligands.


Subject(s)
Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/chemistry , Allosteric Regulation , Binding Sites , Crystallography, X-Ray , Humans , Models, Molecular , Protein Binding , Protein Conformation
5.
Nat Chem Biol ; 13(6): 613-615, 2017 06.
Article in English | MEDLINE | ID: mdl-28346407

ABSTRACT

O-GlcNAc hydrolase (OGA) catalyzes removal of ßα-linked N-acetyl-D-glucosamine from serine and threonine residues. We report crystal structures of Homo sapiens OGA catalytic domain in apo and inhibited states, revealing a flexible dimer that displays three unique conformations and is characterized by subdomain α-helix swapping. These results identify new structural features of the substrate-binding groove adjacent to the catalytic site and open new opportunities for structural, mechanistic and drug discovery activities.


Subject(s)
Models, Biological , beta-N-Acetylhexosaminidases/chemistry , beta-N-Acetylhexosaminidases/metabolism , Acetylglucosamine/metabolism , Binding Sites , Calorimetry , Catalytic Domain , Crystallography, X-Ray , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Humans , Protein Structure, Tertiary , Substrate Specificity
6.
Bioorg Med Chem Lett ; 26(7): 1803-8, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26927423

ABSTRACT

The mammalian Janus Kinases (JAK1, JAK2, JAK3 and TYK2) are intracellular, non-receptor tyrosine kinases whose activities have been associated in the literature and the clinic with a variety of hyperproliferative diseases and immunological disorders. At the onset of the program, it was hypothesized that a JAK1 selective compound over JAK2 could lead to an improved therapeutic index relative to marketed non-selective JAK inhibitors by avoiding the clinical AEs, such as anemia, presumably associated with JAK2 inhibition. During the course of the JAK1 program, a number of diverse chemical scaffolds were identified from both uHTS campaigns and de novo scaffold design. As part of this effort, a (benz)imidazole scaffold evolved via a scaffold-hopping exercise from a mature chemical series. Concurrent crystallography-driven exploration of the ribose pocket and the solvent front led to analogs with optimized kinome and JAK1 selectivities over the JAK2 isoform by targeting several residues unique to JAK1, such as Arg-879 and Glu-966.


Subject(s)
Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Janus Kinase 1/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyridones/chemistry , Pyridones/pharmacology , Benzimidazoles/chemical synthesis , Crystallography, X-Ray , Drug Design , Humans , Janus Kinase 1/metabolism , Models, Molecular , Protein Kinase Inhibitors/chemical synthesis , Pyridones/chemical synthesis , Structure-Activity Relationship
7.
ACS Med Chem Lett ; 6(3): 318-23, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25815153

ABSTRACT

3-Hydroxy-4-pyridinones and 5-hydroxy-4-pyrimidinones were identified as inhibitors of catechol-O-methyltransferase (COMT) in a high-throughput screen. These heterocyclic catechol mimics exhibit potent inhibition of the enzyme and an improved toxicity profile versus the marketed nitrocatechol inhibitors tolcapone and entacapone. Optimization of the series was aided by X-ray cocrystal structures of the novel inhibitors in complex with COMT and cofactors SAM and Mg(2+). The crystal structures suggest a mechanism of inhibition for these heterocyclic inhibitors distinct from previously disclosed COMT inhibitors.

8.
J Biol Chem ; 288(47): 34073-34080, 2013 Nov 22.
Article in English | MEDLINE | ID: mdl-24108127

ABSTRACT

The emergence of antibiotic-resistant strains of pathogenic bacteria is an increasing threat to global health that underscores an urgent need for an expanded antibacterial armamentarium. Gram-negative bacteria, such as Escherichia coli, have become increasingly important clinical pathogens with limited treatment options. This is due in part to their lipopolysaccharide (LPS) outer membrane components, which dually serve as endotoxins while also protecting Gram-negative bacteria from antibiotic entry. The LpxC enzyme catalyzes the committed step of LPS biosynthesis, making LpxC a promising target for new antibacterials. Here, we present the first structure of an LpxC enzyme in complex with the deacetylation reaction product, UDP-(3-O-(R-3-hydroxymyristoyl))-glucosamine. These studies provide valuable insight into recognition of substrates and products by LpxC and a platform for structure-guided drug discovery of broad spectrum Gram-negative antibiotics.


Subject(s)
Amidohydrolases/chemistry , Escherichia coli/enzymology , Myristic Acids/chemistry , Protons , Uridine Diphosphate N-Acetylglucosamine/analogs & derivatives , Amidohydrolases/metabolism , Crystallography, X-Ray , Lipopolysaccharides/biosynthesis , Lipopolysaccharides/chemistry , Myristic Acids/metabolism , Protein Structure, Tertiary , Uridine Diphosphate N-Acetylglucosamine/chemistry , Uridine Diphosphate N-Acetylglucosamine/metabolism
9.
J Med Chem ; 56(6): 2294-310, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23379595

ABSTRACT

This report documents the first example of a specific inhibitor of protein kinases with preferential binding to the activated kinase conformation: 5H-benzo[4,5]cyclohepta[1,2-b]pyridin-5-one 11r (MK-8033), a dual c-Met/Ron inhibitor under investigation as a treatment for cancer. The design of 11r was based on the desire to reduce time-dependent inhibition of CYP3A4 (TDI) by members of this structural class. A novel two-step protocol for the synthesis of benzylic sulfonamides was developed to access 11r and analogues. We provide a rationale for the observed selectivity based on X-ray crystallographic evidence and discuss selectivity trends with additional examples. Importantly, 11r provides full inhibition of tumor growth in a c-Met amplified (GTL-16) subcutaneous tumor xenograft model and may have an advantage over inactive form kinase inhibitors due to equal potency against a panel of oncogenic activating mutations of c-Met in contrast to c-Met inhibitors without preferential binding to the active kinase conformation.


Subject(s)
Benzocycloheptenes/metabolism , Benzocycloheptenes/pharmacology , Drug Discovery , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/metabolism , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Sulfonamides/metabolism , Sulfonamides/pharmacology , Animals , Benzocycloheptenes/chemistry , Cell Line, Tumor , Dogs , Enzyme Activation/drug effects , Female , Humans , Mice , Models, Molecular , Protein Conformation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/chemistry , Rats , Substrate Specificity , Sulfonamides/chemistry , Xenograft Model Antitumor Assays
10.
J Med Chem ; 54(12): 4092-108, 2011 Jun 23.
Article in English | MEDLINE | ID: mdl-21608528

ABSTRACT

c-Met is a transmembrane tyrosine kinase that mediates activation of several signaling pathways implicated in aggressive cancer phenotypes. In recent years, research into this area has highlighted c-Met as an attractive cancer drug target, triggering a number of approaches to disrupt aberrant c-Met signaling. Screening efforts identified a unique class of 5H-benzo[4,5]cyclohepta[1,2-b]pyridin-5-one kinase inhibitors, exemplified by 1. Subsequent SAR studies led to the development of 81 (MK-2461), a potent inhibitor of c-Met that was efficacious in preclinical animal models of tumor suppression. In addition, biochemical studies and X-ray analysis have revealed that this unique class of kinase inhibitors binds preferentially to the activated (phosphorylated) form of the kinase. This report details the development of 81 and provides a description of its unique biochemical properties.


Subject(s)
Antineoplastic Agents/chemical synthesis , Benzocycloheptenes/chemical synthesis , Pyridines/chemical synthesis , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Benzocycloheptenes/pharmacokinetics , Benzocycloheptenes/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Dogs , Drug Screening Assays, Antitumor , Female , Haplorhini , Humans , Mice , Mice, Nude , Models, Molecular , Mutation , Neoplasm Transplantation , Phosphorylation , Protein Binding , Pyrazoles/chemical synthesis , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Pyridines/pharmacokinetics , Pyridines/pharmacology , Rats , Receptor Protein-Tyrosine Kinases/genetics , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , Transplantation, Heterologous
11.
J Biol Chem ; 286(13): 11218-25, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21247903

ABSTRACT

The receptor tyrosine kinase c-Met is implicated in oncogenesis and is the target for several small molecule and biologic agents in clinical trials for the treatment of cancer. Binding of the hepatocyte growth factor to the cell surface receptor of c-Met induces activation via autophosphorylation of the kinase domain. Here we describe the structural basis of c-Met activation upon autophosphorylation and the selective small molecule inhibiton of autophosphorylated c-Met. MK-2461 is a potent c-Met inhibitor that is selective for the phosphorylated state of the enzyme. Compound 1 is an MK-2461 analog with a 20-fold enthalpy-driven preference for the autophosphorylated over unphosphorylated c-Met kinase domain. The crystal structure of the unbound kinase domain phosphorylated at Tyr-1234 and Tyr-1235 shows that activation loop phosphorylation leads to the ejection and disorder of the activation loop and rearrangement of helix αC and the G loop to generate a viable active site. Helix αC adopts a orientation different from that seen in activation loop mutants. The crystal structure of the complex formed by the autophosphorylated c-Met kinase domain and compound 1 reveals a significant induced fit conformational change of the G loop and ordering of the activation loop, explaining the selectivity of compound 1 for the autophosphorylated state. The results highlight the role of structural plasticity within the kinase domain in imparting the specificity of ligand binding and provide the framework for structure-guided design of activated c-Met inhibitors.


Subject(s)
Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/chemistry , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/chemistry , Animals , Cell Line , Crystallography, X-Ray , Drug Design , Humans , Phosphorylation , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Spodoptera , Structure-Activity Relationship , c-Mer Tyrosine Kinase
12.
BMC Struct Biol ; 10: 16, 2010 Jun 11.
Article in English | MEDLINE | ID: mdl-20540760

ABSTRACT

BACKGROUND: The unique S28 family of proteases is comprised of the carboxypeptidase PRCP and the aminopeptidase DPP7. The structural basis of the different substrate specificities of the two enzymes is not understood nor has the structure of the S28 fold been described. RESULTS: The experimentally phased 2.8 A crystal structure is presented for human PRCP. PRCP contains an alpha/beta hydrolase domain harboring the catalytic Asp-His-Ser triad and a novel helical structural domain that caps the active site. Structural comparisons with prolylendopeptidase and DPP4 identify the S1 proline binding site of PRCP. A structure-based alignment with the previously undescribed structure of DPP7 illuminates the mechanism of orthogonal substrate specificity of PRCP and DPP7. PRCP has an extended active-site cleft that can accommodate proline substrates with multiple N-terminal residues. In contrast, the substrate binding groove of DPP7 is occluded by a short amino-acid insertion unique to DPP7 that creates a truncated active site selective for dipeptidyl proteolysis of N-terminal substrates. CONCLUSION: The results define the structure of the S28 family of proteases, provide the structural basis of PRCP and DPP7 substrate specificity and enable the rational design of selective PRCP modulators.


Subject(s)
Carboxypeptidases/chemistry , Amino Acid Sequence , Binding Sites , Carboxypeptidases/genetics , Carboxypeptidases/metabolism , Catalytic Domain , Crystallography, X-Ray , Humans , Molecular Sequence Data , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity
13.
Article in English | MEDLINE | ID: mdl-20516604

ABSTRACT

Prolylcarboxypeptidase (PrCP) is a lysosomal serine carboxypeptidase that cleaves a variety of C-terminal amino acids adjacent to proline and has been implicated in diseases such as hypertension and obesity. Here, the robust production, purification and crystallization of glycosylated human PrCP from stably transformed CHO cells is described. Purified PrCP yielded crystals belonging to space group R32, with unit-cell parameters a = b = 181.14, c = 240.13 A, that diffracted to better than 2.8 A resolution.


Subject(s)
Carboxypeptidases/chemistry , Animals , CHO Cells , Carboxypeptidases/genetics , Carboxypeptidases/isolation & purification , Cricetinae , Cricetulus , Crystallization , Crystallography, X-Ray , Gene Expression , Glycosylation , Humans
14.
J Biol Chem ; 285(7): 4587-94, 2010 Feb 12.
Article in English | MEDLINE | ID: mdl-19864428

ABSTRACT

p70 ribosomal S6 kinase (p70S6K) is a downstream effector of the mTOR signaling pathway involved in cell proliferation, cell growth, cell-cycle progression, and glucose homeostasis. Multiple phosphorylation events within the catalytic, autoinhibitory, and hydrophobic motif domains contribute to the regulation of p70S6K. We report the crystal structures of the kinase domain of p70S6K1 bound to staurosporine in both the unphosphorylated state and in the 3'-phosphoinositide-dependent kinase-1-phosphorylated state in which Thr-252 of the activation loop is phosphorylated. Unphosphorylated p70S6K1 exists in two crystal forms, one in which the p70S6K1 kinase domain exists as a monomer and the other as a domain-swapped dimer. The crystal structure of the partially activated kinase domain that is phosphorylated within the activation loop reveals conformational ordering of the activation loop that is consistent with a role in activation. The structures offer insights into the structural basis of the 3'-phosphoinositide-dependent kinase-1-induced activation of p70S6K and provide a platform for the rational structure-guided design of specific p70S6K inhibitors.


Subject(s)
Ribosomal Protein S6 Kinases, 70-kDa/chemistry , Chromatography, Gel , Crystallography, X-Ray , Humans , Phosphorylation , Polymerase Chain Reaction , Protein Binding , Protein Multimerization , Protein Structure, Secondary , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Staurosporine/metabolism , Ultracentrifugation
15.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 8): 777-85, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19622861

ABSTRACT

The p38 mitogen-activated protein kinases are activated in response to environmental stress and cytokines and play a significant role in transcriptional regulation and inflammatory responses. Of the four p38 isoforms known to date, two (p38alpha and p38beta) have been identified as targets for cytokine-suppressive anti-inflammatory drugs. Recently, it was reported that specific inhibition of the p38alpha isoform is necessary and sufficient for anti-inflammatory efficacy in vivo, while further inhibition of p38beta may not provide any additional benefit. In order to aid the development of p38alpha-selective compounds, the three-dimensional structure of p38beta was determined. To do so, the C162S and C119S,C162S mutants of human MAP kinase p38beta were cloned, expressed in Escherichia coli and purified. Initial screening hits in crystallization trials in the presence of an inhibitor led upon optimization to crystals that diffracted to 2.05 A resolution and allowed structure determination (PDB codes 3gc8 and 3gc9 for the single and double mutant, respectively). The structure of the p38alpha C162S mutant in complex with the same inhibitor is also reported (PDB code 3gc7). A comparison between the structures of the two kinases showed that they are highly similar overall but that there are differences in the relative orientation of the N- and C-terminal domains that causes a reduction in the size of the ATP-binding pocket in p38beta. This difference in size between the two pockets could be exploited in order to achieve selectivity.


Subject(s)
Adenosine Triphosphate/chemistry , Escherichia coli/enzymology , Mutant Proteins/chemistry , Protein Isoforms/chemistry , p38 Mitogen-Activated Protein Kinases/chemistry , Adenosine Triphosphate/metabolism , Anti-Inflammatory Agents/chemistry , Binding Sites , Cloning, Molecular , Crystallization , Crystallography, X-Ray , Cytokines/immunology , Cytokines/metabolism , Escherichia coli/genetics , Humans , Inflammation , Mutant Proteins/genetics , Mutant Proteins/immunology , Mutant Proteins/metabolism , Protein Binding , Protein Conformation , Protein Isoforms/genetics , Protein Isoforms/immunology , Protein Isoforms/metabolism , Sequence Alignment , Substrate Specificity , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/immunology , p38 Mitogen-Activated Protein Kinases/metabolism
18.
J Med Chem ; 51(3): 589-602, 2008 Feb 14.
Article in English | MEDLINE | ID: mdl-18201067

ABSTRACT

A series of beta-aminoamides bearing triazolopiperazines have been discovered as potent, selective, and orally active dipeptidyl peptidase IV (DPP-4) inhibitors by extensive structure-activity relationship (SAR) studies around the triazolopiperazine moiety. Among these, compound 34b with excellent in vitro potency (IC50 = 4.3 nM) against DPP-4, high selectivity over other enzymes, and good pharmacokinetic profiles exhibited pronounced in vivo efficacy in an oral glucose tolerance test (OGTT) in lean mice. On the basis of these properties, compound 34b has been profiled in detail. Further refinement of the triazolopiperazines resulted in the discovery of a series of extremely potent compounds with subnanomolar activity against DPP-4 (42b- 49b), that is, 4-fluorobenzyl-substituted compound 46b, which is notable for its superior potency (IC50 = 0.18 nM). X-ray crystal structure determination of compounds 34b and 46b in complex with DPP-4 enzyme revealed that (R)-stereochemistry at the 8-position of triazolopiperazines is strongly preferred over (S) with respect to DPP-4 inhibition.


Subject(s)
Amides/chemical synthesis , Dipeptidyl-Peptidase IV Inhibitors , Piperazines/chemical synthesis , Pyrazines/chemical synthesis , Triazoles/chemical synthesis , Amides/pharmacokinetics , Amides/pharmacology , Animals , Crystallography, X-Ray , Dipeptidyl Peptidase 4/chemistry , Dogs , Glucose Tolerance Test , Haplorhini , Humans , Male , Mice , Mice, Inbred C57BL , Piperazines/pharmacokinetics , Piperazines/pharmacology , Pyrazines/pharmacokinetics , Pyrazines/pharmacology , Rats , Stereoisomerism , Structure-Activity Relationship , Triazoles/pharmacokinetics , Triazoles/pharmacology
19.
Bioorg Med Chem Lett ; 17(21): 5806-11, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17851076

ABSTRACT

A novel series of 4-arylcyclohexylalanine DPP-4 inhibitors was synthesized and tested for inhibitory activity as well as selectivity over the related proline-specific enzymes DPP-8 and DPP-9. Optimization of this series led to 28 (DPP-4 IC(50)=4.8 nM), which showed an excellent pharmacokinetic profile across several preclinical species. Evaluation of 28 in an oral glucose tolerance test demonstrated that this compound effectively reduced glucose excursion in lean mice.


Subject(s)
Alanine/analogs & derivatives , Dipeptidyl-Peptidase IV Inhibitors , Protease Inhibitors/pharmacology , Administration, Oral , Alanine/chemistry , Alanine/pharmacology , Animals , Area Under Curve , Mice , Models, Molecular , Protease Inhibitors/administration & dosage , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacokinetics
20.
Bioorg Med Chem Lett ; 17(14): 3877-9, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17502141

ABSTRACT

Molecular modeling was used to improve potency of the cyclohexylamine series. In addition, a 3-D QSAR method was used to gain insight for reducing off-target DPP-8/9 activities. Compounds 3, 4, and 5 were synthesized and found to be potent DPP-4 inhibitors, in particular 4 and 5 are designed to be highly selective against off-target DASH enzymes while maintaining potency on DPP-4.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors , Protease Inhibitors/pharmacology , Pyrimidines/pharmacology , Drug Design , Models, Molecular , Protease Inhibitors/chemistry , Pyrimidines/chemistry , Quantitative Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...