Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 278: 116396, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38696872

ABSTRACT

The success of the sodic soil reclamation using elemental S (S°) depends on the population of the native S° oxidizers. Augmenting the native flora of the sodic soils with effective S° oxidizers can enhance the success of the sodic soil reclamation. Present study reports for the first time the S° oxidation potential of the Sphingomonas olei strain 20UP7 isolated from sodic soils with pHs 9.8 and ECe 3.6 dS m-1. Inoculation with S. olei strain 20UP7 caused 13.0-24.2 % increase in S° oxidation in different sodic soils (pHs 9.1-10.5). It improved the concentration of the Ca2+, Mg2+, PO43- and declined the HCO3- and total alkalinity of the soil solution. This isolate also showed appreciable P and Zn solubilization, indole acetic acid, ammonia, and titratable acidity production in the growth media. It tended to the formation of biofilm around sulphur particles. The PCR amplification with gene-specific primers showed the occurrence of soxA, soxB, and soxY genes with a single band corresponding to length of 850, 460, and 360 base pairs, respectively. The integration of the S. olei strain 20UP7 with S° caused 21.7-25.4 % increase in the rice and wheat yield compared to the soil treated with S° alone. This study concludes that the S. olei, native to high saline-sodic soils can be utilized for improving the sodicity reclamation and plant growth promotion using elemental S based formulations.


Subject(s)
Oxidation-Reduction , Soil Microbiology , Soil , Soil/chemistry , Sulfur/metabolism , Sphingomonas , Hydrogen-Ion Concentration , Biofilms/growth & development , Plant Development/drug effects , Indoleacetic Acids/metabolism , Oryza/microbiology , Oryza/growth & development , Soil Pollutants
2.
Sci Rep ; 13(1): 19787, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37957182

ABSTRACT

Thermal Power Plant generates FGD gypsum as by-product during coal combustion. This study evaluates the characterization (spectroscopic and elemental), potentially toxic elements (PTEs) distribution, and environmental risk assessment of FGD gypsum for safe and sustainable use in agriculture. The XRD and SEM analysis confirmed the dominance of crystalline CaSO4·2H2O in FGD gypsum. The order of concentrations of PTEs in FGD gypsum was Fe > Al > Mn > Zn > Ni > Co. The residual fraction was the dominant pool, sharing 80-90% of the total PTEs. The heavy metals (HMs) were below the toxic range in the leachates. The Co, Ni, Al, Fe Mn, Zn had low (< 10%) risk assessment code and the ecotoxicity was in the range of 0.0-7.46%. The contamination factor was also low (0.0-0.16) at the normal recommended doses of FGD gypsum application for sodicity reclamation. The enrichment factor was in the order of Al < Mn < Co < Zn < Ni. Mn [enrichment factor (Ef) 1.2-2.0] and Co (Ef 1.7-2.8) showed negligible enrichment of metals, whereas Ni (Ef 4.3-5.2) and Zn (Ef 4.5-5.6) reported moderate accumulation in soil. The application of FGD gypsum @ 10 t ha-1 for sodicity reclamation will develop a geo-accumulation index below the critical values indicating its safe and sustainable use to achieve land degradation neutrality (LDN) and UN's Sustainable Development Goals.

SELECTION OF CITATIONS
SEARCH DETAIL
...