Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 18(18): e2200924, 2022 05.
Article in English | MEDLINE | ID: mdl-35363403

ABSTRACT

Carbon monoxide (CO) is a gaseous signaling molecule that modulates inflammation, cell survival, and recovery after myocardial infarction. However, handling and dosing of CO as a compressed gas are difficult. Here, light-triggerable and magnetic resonance imaging (MRI)-detectable CO release from dimanganese decacarbonyl (CORM-1) are demonstrated, and the development of CORM-1-loaded polymeric microbubbles (COMB) is described as an ultrasound (US)- and MRI-imageable drug delivery platform for triggerable and targeted CO therapy. COMB are synthesized via a straightforward one-step loading protocol, present a narrow size distribution peaking at 2 µm, and show excellent performance as a CORM-1 carrier and US contrast agent. Light irradiation of COMB induces local production and release of CO, as well as enhanced longitudinal and transversal relaxation rates, enabling MRI monitoring of CO delivery. Proof-of-concept studies for COMB-enabled light-triggered CO release show saturation of hemoglobin with CO in human blood, anti-inflammatory differentiation of macrophages, reduction of hypoxia-induced reactive oxygen species (ROS) production, and inhibition of ischemia-induced apoptosis in endothelial cells and cardiomyocytes. These findings indicate that CO-generating MB are interesting theranostic tools for attenuating hypoxia-associated and ROS-mediated cell and tissue damage in cardiovascular disease.


Subject(s)
Microbubbles , Organometallic Compounds , Carbon Monoxide , Endothelial Cells , Humans , Hypoxia , Precision Medicine , Reactive Oxygen Species
2.
Adv Sci (Weinh) ; 9(10): e2105783, 2022 04.
Article in English | MEDLINE | ID: mdl-35119216

ABSTRACT

Tissue-engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with synthetic polymers and biological components provides a good compromise between high structural stability and biological adaptability. However, imaging approaches to control grafts' structural integrity, physiological function, and remodeling during the entire transition between late in vitro maturation and early in vivo engraftment are mandatory for clinical implementation. Thus, a comprehensive molecular imaging concept using magnetic resonance imaging (MRI) and ultrasound (US) to monitor textile scaffold resorption, extracellular matrix (ECM) remodeling, and endothelial integrity in TEVGs is presented here. Superparamagnetic iron-oxide nanoparticles (SPION) incorporated in biodegradable poly(lactic-co-glycolic acid) (PLGA) fibers of the TEVGs allow to quantitatively monitor scaffold resorption via MRI both in vitro and in vivo. Additionally, ECM formation can be depicted by molecular MRI using elastin- and collagen-targeted probes. Finally, molecular US of αv ß3 integrins confirms the absence of endothelial dysfunction; the latter is provocable by TNF-α. In conclusion, the successful employment of noninvasive molecular imaging to longitudinally evaluate TEVGs remodeling is demonstrated. This approach may foster its translation from in vitro quality control assessment to in vivo applications to ensure proper prostheses engraftment.


Subject(s)
Blood Vessel Prosthesis , Tissue Engineering , Collagen , Extracellular Matrix , Molecular Imaging , Tissue Engineering/methods
3.
Biomaterials ; 275: 120896, 2021 08.
Article in English | MEDLINE | ID: mdl-34090049

ABSTRACT

Microbubbles (MB) are used as ultrasound (US) contrast agents and can be efficiently targeted against markers of angiogenesis and inflammation. Due to their gas core, MB locally alter susceptibilities in magnetic resonance imaging (MRI), but unfortunately, the resulting contrast is low and not sufficient to generate powerful molecular MRI probes. Therefore, we investigated whether a potent molecular MR agent can be generated by encapsulating superparamagnetic iron oxide nanoparticles (SPION) in the polymeric shell of poly (n-butylcyanoacrylate) (PBCA) MB and targeted them against αvß3 integrins on the angiogenic vasculature of 4T1 murine breast carcinomas. SPION-MB consist of an air core and a multi-layered polymeric shell enabling efficient entrapment of SPION. The mean size of SPION-MB was 1.61 ± 0.32 µm. Biotin-streptavidin coupling was employed to functionalize the SPION-MB with cyclic RGDfK (Arg-Gly-Asp) and RADfK (Arg-Ala-Asp) peptides. Cells incubated with RGD-SPION-MB showed enhanced transverse relaxation rates compared with SPION-MB and blocking αvß3 integrin receptors with excess free cRGDfK significantly reduced RGD-SPION-MB binding. Due to the fast binding of RGD-SPION-MB in vivo, dynamic susceptibility contrast MRI was employed to track their retention in tumors in real-time. Higher retention of RGD-SPION-MB was observed compared with SPION-MB and RAD-SPION-MB. To corroborate our MRI results, molecular US was performed the following day using the destruction-replenishment method. Both imaging modalities consistently indicated higher retention of RGD-SPION-MB in angiogenic vessels compared with SPION-MB and RAD-SPION-MB. Competitive blocking experiments in mice further confirmed that the binding of RGD-SPION-MB to αvß3 integrin receptors is specific. Overall, this study demonstrates that RGD-SPION-MB can be employed as molecular MR/US contrast agents and are capable of assessing the αvß3 integrin expression in the neovasculature of malignant tumors.


Subject(s)
Microbubbles , Neoplasms , Animals , Integrin alphaV , Integrin alphaVbeta3 , Magnetic Resonance Imaging , Mice , Ultrasonography
4.
Pharmaceutics ; 11(9)2019 Aug 26.
Article in English | MEDLINE | ID: mdl-31454967

ABSTRACT

Poly(n-butyl cyanoacrylate) microbubbles (PBCA-MB) are extensively employed for functional and molecular ultrasound (US) imaging, as well as for US-mediated drug delivery. To facilitate the use of PBCA-MB as a commercial platform for biomedical applications, it is important to systematically study and improve their stability and shelf-life. In this context, lyophilization (freeze drying) is widely used to increase shelf-life and promote product development. Here, we set out to analyze the stability of standard and rhodamine-B loaded PBCA-MB at three different temperatures (4 °C, 25 °C, and 37 °C), for a period of time of up to 20 weeks. In addition, using sucrose, glucose, polyvinylpyrrolidone (PVP), and polyethylene glycol (PEG) as cryoprotectants, we investigated if PBCA-MB can be lyophilized without affecting their size, concentration, US signal generation properties, and dye retention. Stability assessment showed that PBCA-MB remain largely intact for three and four weeks at 4 °C and 25 °C, respectively, while they disintegrate within one to two weeks at 37 °C, thereby compromising their acoustic properties. Lyophilization analyses demonstrated that PBCA-MB can be efficiently freeze-dried with 5% sucrose and 5% PVP, without changing their size, concentration, and US signal generation properties. Experiments involving rhodamine-B loaded MB indicated that significant dye leakage from the polymeric shell takes place within two to four weeks in case of non-lyophilized PBCA-MB. Lyophilization of rhodamine-loaded PBCA-MB with sucrose and PVP showed that the presence of the dye does not affect the efficiency of freeze-drying, and that the dye is efficiently retained upon MB lyophilization. These findings contribute to the development of PBCA-MB as pharmaceutical products for preclinical and clinical applications.

5.
Adv Drug Deliv Rev ; 119: 44-60, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28697952

ABSTRACT

The performance of nanomedicine formulations depends on the Enhanced Permeability and Retention (EPR) effect. Prototypic nanomedicine-based drug delivery systems, such as liposomes, polymers and micelles, aim to exploit the EPR effect to accumulate at pathological sites, to thereby improve the balance between drug efficacy and toxicity. Thus far, however, tumor-targeted nanomedicines have not yet managed to achieve convincing therapeutic results, at least not in large cohorts of patients. This is likely mostly due to high inter- and intra-patient heterogeneity in EPR. Besides developing (imaging) biomarkers to monitor and predict EPR, another strategy to address this heterogeneity is the establishment of vessel modulation strategies to homogenize and improve EPR. Over the years, several pharmacological and physical co-treatments have been evaluated to improve EPR-mediated tumor targeting. These include pharmacological strategies, such as vessel permeabilization, normalization, disruption and promotion, as well as physical EPR enhancement via hyperthermia, radiotherapy, sonoporation and phototherapy. In the present manuscript, we summarize exemplary studies showing that pharmacological and physical vessel modulation strategies can be used to improve tumor-targeted drug delivery, and we discuss how these advanced combination regimens can be optimally employed to enhance the (pre-) clinical performance of tumor-targeted nanomedicines.


Subject(s)
Antineoplastic Agents/administration & dosage , Neoplasms/drug therapy , Permeability/drug effects , Animals , Antineoplastic Agents/chemistry , Drug Delivery Systems/methods , Humans , Nanomedicine/methods
6.
J Control Release ; 259: 128-135, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28279799

ABSTRACT

Microbubbles (MB) are routinely used as contrast agents for ultrasound (US) imaging. We describe different types of targeted and drug-loaded poly(n-butyl cyanoacrylate) (PBCA) MB, and demonstrate their suitability for multiple biomedical applications, including molecular US imaging and US-mediated drug delivery. Molecular imaging of angiogenic tumor blood vessels and inflamed atherosclerotic endothelium is performed by modifying the surface of PBCA MB with peptides and antibodies recognizing E-selectin and VCAM-1. Stable and inertial cavitation of PBCA MB enables sonoporation and permeabilization of blood vessels in tumors and in the brain, which can be employed for direct and indirect drug delivery. Direct drug delivery is based on US-induced release of (model) drug molecules from the MB shell. Indirect drug delivery refers to US- and MB-mediated enhancement of extravasation and penetration of co-administered drugs and drug delivery systems. These findings are in line with recently reported pioneering proof-of-principle studies showing the usefulness of (phospholipid) MB for molecular US imaging and sonoporation-enhanced drug delivery in patients. They aim to exemplify the potential and the broad applicability of combining MB with US to improve disease diagnosis and therapy.


Subject(s)
Drug Delivery Systems , Enbucrilate/administration & dosage , Microbubbles , Animals , Antibodies/administration & dosage , Antibodies/chemistry , Biotin/administration & dosage , Biotin/chemistry , Brain/metabolism , Carotid Arteries/diagnostic imaging , Carotid Arteries/metabolism , Cell Line, Tumor , Dextrans/administration & dosage , Dextrans/chemistry , E-Selectin/immunology , Enbucrilate/chemistry , Fluorescein-5-isothiocyanate/administration & dosage , Fluorescein-5-isothiocyanate/analogs & derivatives , Fluorescein-5-isothiocyanate/chemistry , Fluorescent Dyes/administration & dosage , Fluorescent Dyes/chemistry , Humans , Male , Mice, Nude , Molecular Imaging , Neoplasms/diagnostic imaging , Neoplasms/metabolism , Neoplasms/pathology , Neovascularization, Pathologic , Rhodamines/administration & dosage , Rhodamines/chemistry , Streptavidin/administration & dosage , Streptavidin/chemistry , Ultrasonic Waves , Ultrasonography , Vascular Cell Adhesion Molecule-1/immunology , Vascular Endothelial Growth Factor Receptor-2/immunology
7.
Pharmacol Res ; 115: 87-95, 2017 01.
Article in English | MEDLINE | ID: mdl-27865762

ABSTRACT

Chemotherapeutic drugs have multiple drawbacks, including severe side effects and suboptimal therapeutic efficacy. Nanomedicines assist in improving the biodistribution and target accumulation of chemotherapeutic drugs, and are therefore able to enhance the balance between efficacy and toxicity. Multiple types of nanomedicines have been evaluated over the years, including liposomes, polymer-drug conjugates and polymeric micelles, which rely on strategies such as passive targeting, active targeting and triggered release for improved tumor-directed drug delivery. Based on the notion that tumors and metastases are highly heterogeneous, it is important to integrate imaging properties in nanomedicine formulations in order to enable non-invasive and quantitative assessment of targeting efficiency. By allowing for patient pre-selection, such next generation nanotheranostics are useful for facilitating clinical translation and personalizing nanomedicine treatments.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Nanoparticles/chemistry , Neoplasms/drug therapy , Pharmaceutical Preparations/administration & dosage , Animals , Antineoplastic Agents/chemistry , Drug Delivery Systems/methods , Humans , Nanomedicine/methods , Pharmaceutical Preparations/chemistry , Theranostic Nanomedicine/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...