Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Neurotherapeutics ; 21(1): e00291, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38241154

ABSTRACT

Alzheimer's disease (AD) is the leading cause of dementia and lacks highly effective treatments. Tau-based therapies hold promise. Tau reduction prevents amyloid-ß-induced dysfunction in preclinical models of AD and also prevents amyloid-ß-independent dysfunction in diverse disease models, especially those with network hyperexcitability, suggesting that strategies exploiting the mechanisms underlying Tau reduction may extend beyond AD. Tau binds several SH3 domain-containing proteins implicated in AD via its central proline-rich domain. We previously used a peptide inhibitor to demonstrate that blocking Tau interactions with SH3 domain-containing proteins ameliorates amyloid-ß-induced dysfunction. Here, we identify a top hit from high-throughput screening for small molecules that inhibit Tau-FynSH3 interactions and describe its optimization with medicinal chemistry. The resulting lead compound is a potent cell-permeable Tau-SH3 interaction inhibitor that binds Tau and prevents amyloid-ß-induced dysfunction, including network hyperexcitability. These data support the potential of using small molecule Tau-SH3 interaction inhibitors as a novel therapeutic approach to AD.


Subject(s)
Alzheimer Disease , tau Proteins , Humans , tau Proteins/metabolism , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , High-Throughput Screening Assays
3.
ACS Infect Dis ; 8(1): 91-105, 2022 01 14.
Article in English | MEDLINE | ID: mdl-34985256

ABSTRACT

HIV-1 Nef is an attractive target for antiretroviral drug discovery because of its role in promoting HIV-1 infectivity, replication, and host immune system avoidance. Here, we applied a screening strategy in which recombinant HIV-1 Nef protein was coupled to activation of the Src-family tyrosine kinase Hck, which enhances the HIV-1 life cycle in macrophages. Nef stimulates recombinant Hck activity in vitro, providing a robust assay for chemical library screening. High-throughput screening of more than 730 000 compounds using the Nef·Hck assay identified six unique hit compounds that bound directly to recombinant Nef by surface plasmon resonance (SPR) in vitro and inhibited HIV-1 replication in primary macrophages in the 0.04 to 5 µM range without cytotoxicity. Eighty-four analogs were synthesized around an isothiazolone scaffold from this series, many of which bound to recombinant Nef and inhibited HIV-1 infectivity in the low to submicromolar range. Compounds in this series restored MHC-I to the surface of HIV-infected primary cells and disrupted a recombinant protein complex of Nef with the C-terminal tail of MHC-I and the µ1 subunit of the AP-1 endocytic trafficking protein. Nef inhibitors in this class have the potential to block HIV-1 replication in myeloid cells and trigger recognition of HIV-infected cells by the adaptive immune system in vivo.


Subject(s)
HIV-1 , Down-Regulation , HIV-1/metabolism , Macrophages/metabolism , Virus Replication , src-Family Kinases/metabolism
4.
Molecules ; 26(21)2021 11 05.
Article in English | MEDLINE | ID: mdl-34771099

ABSTRACT

The delta opioid receptor (DOR) is a crucial receptor system that regulates pain, mood, anxiety, and similar mental states. DOR agonists, such as SNC80, and DOR-neutral antagonists, such as naltrindole, were developed to investigate the DOR in vivo and as potential therapeutics for pain and depression. However, few inverse agonists and non-competitive/irreversible antagonists have been developed, and none are widely available. This leaves a gap in our pharmacological toolbox and limits our ability to investigate the biology of this receptor. Thus, we designed and synthesized the novel compounds SRI-9342 as an irreversible antagonist and SRI-45128 as an inverse agonist. These compounds were then evaluated in vitro for their binding affinity by radioligand binding, their functional activity by 35S-GTPγS coupling, and their cAMP accumulation in cells expressing the human DOR. Both compounds demonstrated high binding affinity and selectivity at the DOR, and both displayed their hypothesized molecular pharmacology of irreversible antagonism (SRI-9342) or inverse agonism (SRI-45128). Together, these results demonstrate that we have successfully designed new inverse agonists and irreversible antagonists of the DOR based on a novel chemical scaffold. These new compounds will provide new tools to investigate the biology of the DOR or even new potential therapeutics.


Subject(s)
Analgesics, Opioid/chemistry , Binding, Competitive , Drug Discovery , Receptors, Opioid, delta/chemistry , Analgesics, Opioid/chemical synthesis , Analgesics, Opioid/pharmacology , Chemistry Techniques, Synthetic , Drug Discovery/methods , Humans , Ligands , Molecular Structure , Protein Binding , Receptors, Opioid, delta/agonists , Structure-Activity Relationship
5.
J Med Chem ; 64(8): 4762-4786, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33835811

ABSTRACT

A benzo[6]annulene, 4-(tert-butyl)-N-(3-methoxy-5,6,7,8-tetrahydronaphthalen-2-yl) benzamide (1a), was identified as an inhibitor against Chikungunya virus (CHIKV) with antiviral activity EC90 = 1.45 µM and viral titer reduction (VTR) of 2.5 log at 10 µM with no observed cytotoxicity (CC50 = 169 µM) in normal human dermal fibroblast cells. Chemistry efforts to improve potency, efficacy, and drug-like properties of 1a resulted in a novel lead compound 8q, which possessed excellent cellular antiviral activity (EC90 = 270 nM and VTR of 4.5 log at 10 µM) and improved liver microsomal stability. CHIKV resistance to an analog of 1a, compound 1c, tracked to a mutation in the nsP3 macrodomain. Further mechanism of action studies showed compounds working through inhibition of human dihydroorotate dehydrogenase in addition to CHIKV nsP3 macrodomain. Moderate efficacy was observed in an in vivo CHIKV challenge mouse model for compound 8q as viral replication was rescued from the pyrimidine salvage pathway.


Subject(s)
Antiviral Agents/pharmacology , Benzene Derivatives/chemistry , Chikungunya virus/physiology , Virus Replication/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , Benzene Derivatives/metabolism , Benzene Derivatives/pharmacology , Benzene Derivatives/therapeutic use , Binding Sites , Cell Line , Cell Survival/drug effects , Chikungunya Fever/drug therapy , Dihydroorotate Dehydrogenase , Disease Models, Animal , Female , Half-Life , Humans , Male , Mice , Mice, Inbred C57BL , Microsomes, Liver/metabolism , Molecular Docking Simulation , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Structure-Activity Relationship
6.
Cancer Res ; 81(8): 2220-2233, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33602784

ABSTRACT

The development of novel therapeutics that exploit alterations in the activation state of key cellular signaling pathways due to mutations in upstream regulators has generated the field of personalized medicine. These first-generation efforts have focused on actionable mutations identified by deep sequencing of large numbers of tumor samples. We propose that a second-generation opportunity exists by exploiting key downstream "nodes of control" that contribute to oncogenesis and are inappropriately activated due to loss of upstream regulation and microenvironmental influences. The RNA-binding protein HuR represents such a node. Because HuR functionality in cancer cells is dependent on HuR dimerization and its nuclear/cytoplasmic shuttling, we developed a new class of molecules targeting HuR protein dimerization. A structure-activity relationship algorithm enabled development of inhibitors of HuR multimer formation that were soluble, had micromolar activity, and penetrated the blood-brain barrier. These inhibitors were evaluated for activity validation and specificity in a robust cell-based assay of HuR dimerization. SRI-42127, a molecule that met these criteria, inhibited HuR multimer formation across primary patient-derived glioblastoma xenolines (PDGx), leading to arrest of proliferation, induction of apoptosis, and inhibition of colony formation. SRI-42127 had favorable attributes with central nervous system penetration and inhibited tumor growth in mouse models. RNA and protein analysis of SRI-42127-treated PDGx xenolines across glioblastoma molecular subtypes confirmed attenuation of targets upregulated by HuR. These results highlight how focusing on key attributes of HuR that contribute to cancer progression, namely cytoplasmic localization and multimerization, has led to the development of a novel, highly effective inhibitor. SIGNIFICANCE: These findings utilize a cell-based mechanism of action assay with a structure-activity relationship compound development pathway to discover inhibitors that target HuR dimerization, a mechanism required for cancer promotion.


Subject(s)
Carcinogenesis/drug effects , ELAV-Like Protein 1/chemistry , Protein Multimerization/drug effects , Algorithms , Animals , Apoptosis/drug effects , Blood-Brain Barrier , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/physiology , Glioblastoma/drug therapy , Glioblastoma/metabolism , Humans , Mice , Mice, Nude , Precision Medicine , Signal Transduction/drug effects , Structure-Activity Relationship , Tumor Stem Cell Assay , Up-Regulation
7.
Bioorg Med Chem Lett ; 30(4): 126950, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31928838

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a rare and progressive neurodegenerative disease with unknown etiology. It is caused by the degeneration of motor neurons responsible for controlling voluntary muscles. It has been reported that mutations in the superoxide dismutase (SOD) 1 gene can lead to ALS. SOD1 abnormalities have been identified in both familial, as well as sporadic ALS cases. SOD2 is a highly inducible SOD that works in conjunction with SOD1. SOD2 can be induced through activation of NF-κBs. We previously reported that the novel small molecule, SRI-22818, increases NF-κB expression and activation and SOD2 levels in vitro and has activity in vivo in the SOD1-G93A reference model of ALS. We report herein the synthesis and biological evaluation of SRI-22818 analogs.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Small Molecule Libraries/chemistry , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Gene Expression Regulation/drug effects , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Small Molecule Libraries/pharmacology , Small Molecule Libraries/therapeutic use , Structure-Activity Relationship , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
8.
Eur J Med Chem ; 189: 112023, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31978781

ABSTRACT

Disruptor of Telomeric Silencing 1-Like (DOT1L), the sole histone H3 lysine 79 (H3K79) methyltransferase, is required for leukemogenic transformation in a subset of leukemias bearing chromosomal translocations of the Mixed Lineage Leukemia (MLL) gene, as well as other cancers. Thus, DOT1L is an attractive therapeutic target and discovery of small molecule inhibitors remain of high interest. Herein, we are presenting screening results for a unique focused library of 1200 nucleoside analogs originally produced under the aegis of the NIH Pilot Scale Library Program. The complete nucleoside set was screened virtually against DOT1L, resulting in 210 putative hits. In vitro screening of the virtual hits resulted in validation of 11 compounds as DOT1L inhibitors clustered into two distinct chemical classes, adenosine-based inhibitors and a new chemotype that lacks adenosine. Based on the developed DOT1L ligand binding model, a structure-based design strategy was applied and a second-generation of non-nucleoside DOT1L inhibitors was developed. Newly synthesized compound 25 was the most potent DOT1L inhibitor in the new series with an IC50 of 1.0 µM, showing 40-fold improvement in comparison with hit 9 and exhibiting reasonable on target effects in a DOT1L dependent murine cell line. These compounds represent novel chemical probes with a unique non-nucleoside scaffold that bind and compete with the SAM binding site of DOT1L, thus providing foundation for further medicinal chemistry efforts to develop more potent compounds.


Subject(s)
Bone Marrow/drug effects , Cell Proliferation , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays/methods , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Leukemia, Experimental/drug therapy , Nucleosides/pharmacology , Triazoles/pharmacology , Animals , Bone Marrow/enzymology , Computer Simulation , Enzyme Inhibitors/chemistry , Leukemia, Experimental/enzymology , Mice , Nucleosides/chemistry , Structure-Activity Relationship , Triazoles/chemistry
9.
ACS Comb Sci ; 21(3): 183-191, 2019 03 11.
Article in English | MEDLINE | ID: mdl-30653914

ABSTRACT

Under the aegis of the Pilot Scale Library Program of the NIH Roadmap Initiative, a new library of propan-1-amine containing aza acyclic nucleosides was designed and prepared, and we now report a diverse set of 157 purine, pyrimidine, and 1,2,4-triazole- N-acetamide analogues. These new nucleoside analogues were prepared in a parallel high throughput solution-phase format. A set of diverse amines was reacted with several nucleobase N-propaldehydes utilizing reductive amination with sodium triacetoxyborohydride coupling to produce a small and diverse aza acyclic nucleoside library. All reactions were performed using 24-well reaction blocks and an automatic reagent-dispensing platform under an inert atmosphere. Final targets were purified on an automated system using solid sample loading prepacked cartridges and prepacked silica gel columns. All compounds were characterized by NMR and HRMS and were analyzed for purity by HPLC prior to submission to the Molecular Libraries Small Molecule Repository (MLSMR). Initial screening through the Molecular Libraries Probe Production Centers Network (MLPCN) demonstrated diverse and interesting biological activities.


Subject(s)
Nucleosides/chemistry , Small Molecule Libraries/chemistry , Acetamides/chemistry , Aldehydes/chemistry , Amination , Amines/chemistry , High-Throughput Screening Assays/methods , Molecular Structure , Purines/chemistry , Pyrimidines/chemistry , Structure-Activity Relationship , Triazoles/chemistry
10.
Int J Mol Sci ; 19(5)2018 May 20.
Article in English | MEDLINE | ID: mdl-29783777

ABSTRACT

Wnt/ß-catenin signaling is upregulated in triple-negative breast cancer (TNBC) compared to other breast cancer subtypes and normal tissues. Current Wnt/ß-catenin inhibitors, such as niclosamide, target the pathway nonspecifically and exhibit poor pharmacokinetics/pharmacodynamics in vivo. Niclosamide targets other pathways, including mTOR, STAT3 and Notch. Novel benzimidazoles have been developed to inhibit Wnt/ß-catenin signaling with greater specificity. The compounds SRI33576 and SRI35889 were discovered to produce more cytotoxicity in TNBC cell lines than in noncancerous cells. The agents also downregulated Wnt/ß-catenin signaling mediators LRP6, cyclin D1, survivin and nuclear active ß-catenin. In addition, SRI33576 did not affect mTOR, STAT3 and Notch signaling in TNBC and noncancerous cells. SRI35889 inhibited mTOR signaling less in noncancerous than in cancerous cells, while not affecting STAT3 and Notch pathways. Compounds SRI32529, SRI35357 and SRI35361 were not selectively cytotoxic against TNBC cell lines compared to MCF10A cells. While SRI32529 inhibited Wnt/ß-catenin signaling, the compound also mitigated mTOR, STAT3 and Notch signaling. SRI33576 and SRI35889 were identified as cytotoxic and selective inhibitors of Wnt/ß-catenin signaling with therapeutic potential to treat TNBC in vivo.


Subject(s)
Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Triple Negative Breast Neoplasms/metabolism , Wnt Signaling Pathway/drug effects , Antineoplastic Agents/chemical synthesis , Benzimidazoles/chemical synthesis , Cell Line, Tumor , Humans , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Receptors, Notch/genetics , Receptors, Notch/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Wnt Proteins/genetics , Wnt Proteins/metabolism , beta Catenin/genetics , beta Catenin/metabolism
13.
Cancer Lett ; 389: 41-48, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28043913

ABSTRACT

Activation of Wnt/ß-catenin signaling is associated with pancreatic and colorectal cancer, among others. To-date, there are no FDA-approved small molecule Wnt/ß-catenin inhibitors and many past efforts resulted in compounds with undesirable off-target effects. We recently identified a series of benzimidazole analogs as potent inhibitors of Wnt/ß-catenin signaling. Here, we show that the lead compound SRI36160 displayed selective Wnt inhibition and potent antiproliferative activity in pancreatic and colorectal cancer cells. Moreover, SRI36160 had no effect on STAT3 and mTORC1 signaling in pancreatic and colorectal cancer cells, and was not effective in inhibiting proliferation of non-cancerous cells. Our findings suggest that this series of benzimidazole analogs presents a novel approach for the treatment of Wnt-dependent cancers such as colorectal and pancreatic cancer.


Subject(s)
Benzimidazoles/pharmacology , Colorectal Neoplasms/drug therapy , Pancreatic Neoplasms/drug therapy , Wnt Proteins/antagonists & inhibitors , Wnt Signaling Pathway/drug effects , beta Catenin/antagonists & inhibitors , Adenomatous Polyposis Coli Protein/genetics , Animals , Cell Proliferation/drug effects , Cells, Cultured , Colorectal Neoplasms/pathology , Humans , Low Density Lipoprotein Receptor-Related Protein-6/physiology , Mice , Mutation , Pancreatic Neoplasms/pathology , Phosphorylation , Wnt3A Protein/physiology , beta Catenin/genetics
14.
Oncotarget ; 7(10): 11263-70, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26820295

ABSTRACT

The Wnt/ß-catenin signaling pathway is critical for the initiation and progression of most colon cancers, and has emerged as one of the most promising targets for colorectal cancer chemoprevention and treatment. In this study, we have discovered a structurally related series of quinazolines as potent inhibitors of Wnt/ß-catenin signaling in colorectal cancer cells harboring mutations in CTNNB1 or APC. We showed that the quinazoline leads suppressed Wnt/ß-catenin signaling without altering the level of ß-catenin protein in colorectal cancer cells, suggesting that they act on the downstream elements of the pathway. Moreover, the quinazoline leads displayed potent anticancer activities with IC50 values between 4.9 and 17.4 µM in colorectal cancer cells. Importantly, we also found that a structurally related quinazoline lacking inhibitory effect on Wnt/ß-catenin signaling was unable to suppress colorectal cancer cell proliferation. Together, these results suggest that the quinazoline lead compounds identified in this study have therapeutic potential for the prevention and treatment of colorectal cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/metabolism , Quinazolines/pharmacology , Wnt Signaling Pathway/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Inhibitory Concentration 50
15.
J Pharmacol Exp Ther ; 353(3): 529-38, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25788711

ABSTRACT

Novel allosteric modulators of the dopamine transporter (DAT) have been identified. We have shown previously that SRI-9804 [N-(diphenylmethyl)-2-phenyl-4-quinazolinamine], SRI-20040 [N-(2,2-diphenylethyl)-2-phenyl-4-quinazolinamine], and SRI-20041 [N-(3,3-diphenylpropyl)-2-phenyl-4-quinazolinamine] partially inhibit [(125)I]RTI-55 ([(125)I]3ß-(4'-iodophenyl)tropan-2ß-carboxylic acid methyl ester) binding and [(3)H]dopamine ([(3)H]DA) uptake, slow the dissociation rate of [(125)I]RTI-55 from the DAT, and allosterically modulate d-amphetamine-induced, DAT-mediated DA release. We synthesized and evaluated the activity of >500 analogs of these ligands and report here on 36 selected compounds. Using synaptosomes prepared from rat caudate, we conducted [(3)H]DA uptake inhibition assays, DAT binding assays with [(3)H]WIN35428 ([(3)H]2ß-carbomethoxy-3ß-(4-fluorophenyl)tropane), and DAT-mediated release assays with either [(3)H]MPP(+) ([(3)H]1-methyl-4-phenylpyridinium) or [(3)H]DA. We observed three groups of [(3)H]DA uptake inhibitors: 1) full-efficacy agents with a one-site fit, 2) full-efficacy agents with a two-site fit, and 3) partial-efficacy agents with a one-site fit-the focus of further studies. These agents partially inhibited DA, serotonin, and norepinephrine uptake, yet were much less potent at inhibiting [(3)H]WIN35428 binding to the DAT. For example, SRI-29574 [N-(2,2-diphenylethyl)-2-(imidazo[1,2-a]pyridin-6-yl)quinazolin-4-amine] partially inhibited DAT uptake, with an IC50 = 2.3 ± 0.4 nM, without affecting binding to the DAT. These agents did not alter DAT-mediated release of [(3)H]MPP(+) in the absence or presence of 100 nM d-amphetamine. SRI-29574 had no significant effect on the d-amphetamine EC50 or Emax value for DAT-mediated release of [(3)H]MPP(+). These studies demonstrate the existence of potent DAT ligands that partially block [(3)H]DA uptake, without affecting DAT binding or d-amphetamine-induced [(3)H]MPP(+) release. These compounds may prove to be useful probes of biogenic amine transporter function as well as novel therapeutics.


Subject(s)
Dopamine Plasma Membrane Transport Proteins/drug effects , 1-Methyl-4-phenylpyridinium/pharmacology , Animals , Binding, Competitive/drug effects , Caudate Nucleus/drug effects , Caudate Nucleus/metabolism , Cocaine/analogs & derivatives , Cocaine/pharmacology , Dextroamphetamine/pharmacology , Dopamine/metabolism , Dopamine Uptake Inhibitors/pharmacology , Ligands , Male , Rats , Synaptosomes/drug effects , Synaptosomes/metabolism
16.
ACS Comb Sci ; 16(9): 485-93, 2014 Sep 08.
Article in English | MEDLINE | ID: mdl-24933643

ABSTRACT

Molecular diversity plays a pivotal role in modern drug discovery against phenotypic or enzyme-based targets using high throughput screening technology. Under the auspices of the Pilot Scale Library Program of the NIH Roadmap Initiative, we produced and report herein a diverse library of 181 purine, pyrimidine, and 1,2,4-triazole-N-acetamide analogues which were prepared in a parallel high throughput solution-phase reaction format. A set of assorted amines were reacted with several nucleic acid N-acetic acids utilizing HATU as the coupling reagent to produce diverse acyclic nucleoside N-acetamide analogues. These reactions were performed using 24 well reaction blocks and an automatic reagent-dispensing platform under inert atmosphere. The targeted compounds were purified on an automated purification system using solid sample loading prepacked cartridges and prepacked silica gel columns. All compounds were characterized by NMR and HRMS, and were analyzed for purity by HPLC before submission to the Molecular Libraries Small Molecule Repository (MLSMR) at NIH. Initial screening through the Molecular Libraries Probe Production Centers Network (MLPCN) program, indicates that several analogues showed diverse and interesting biological activities.


Subject(s)
Acetamides/chemistry , Nucleosides/chemical synthesis , Purines/chemistry , Pyrimidines/chemistry , Small Molecule Libraries/chemical synthesis , Triazoles/chemistry , Molecular Structure , Nucleosides/chemistry , Small Molecule Libraries/chemistry , Solutions
17.
Perspect Clin Res ; 4(4): 240-1, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24312895
18.
Perspect Clin Res ; 4(3): 192, 2013 Jul.
Article in English | MEDLINE | ID: mdl-24010063
19.
Bioorg Med Chem ; 21(7): 1685-95, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23434367

ABSTRACT

6-Oxo and 6-thio analogs of purine were prepared based on the initial activity screening of a small, diverse purine library against Mycobacterium tuberculosis (Mtb). Certain 6-oxo and 6-thio-substituted purine analogs described herein showed moderate to good inhibitory activity. N(9)-substitution apparently enhances the anti-mycobacterial activity in the purine series described herein. Several 2-amino and 2-chloro purine analogs were also synthesized that showed moderate inhibitory activity against Mtb.


Subject(s)
Antitubercular Agents/chemistry , Antitubercular Agents/therapeutic use , Mycobacterium tuberculosis/drug effects , Purines/chemistry , Purines/therapeutic use , Tuberculosis/drug therapy , Animals , Antitubercular Agents/pharmacology , Antitubercular Agents/toxicity , Cell Survival/drug effects , Chlorocebus aethiops , Humans , Mice , Microbial Sensitivity Tests , Purines/pharmacology , Purines/toxicity , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/pharmacology , Sulfhydryl Compounds/therapeutic use , Sulfhydryl Compounds/toxicity , Vero Cells
20.
PLoS One ; 7(4): e34571, 2012.
Article in English | MEDLINE | ID: mdl-22506030

ABSTRACT

Bacterial P-loop GTPases belong to a family of proteins that selectively hydrolyze a small molecule guanosine tri-phosphate (GTP) to guanosine di-phosphate (GDP) and inorganic phosphate, and regulate several essential cellular activities such as cell division, chromosomal segregation and ribosomal assembly. A comparative genome sequence analysis of different mycobacterial species indicates the presence of multiple P-loop GTPases that exhibit highly conserved motifs. However, an exact function of most of these GTPases in mycobacteria remains elusive. In the present study we characterized the function of a P-loop GTPase in mycobacteria by employing an EngA homologue from Mycobacterium smegmatis, encoded by an open reading frame, designated as MSMEG_3738. Amino acid sequence alignment and phylogenetic analysis suggest that MSMEG_3738 (termed as EngA(MS)) is highly conserved in mycobacteria. Homology modeling of EngA(MS) reveals a cloverleaf structure comprising of α/ß fold typical to EngA family of GTPases. Recombinant EngA(MS) purified from E. coli exhibits a GTP hydrolysis activity which is inhibited by the presence of GDP. Interestingly, the EngA(MS) protein is co-eluted with 16S and 23S ribosomal RNA during purification and exhibits association with 30S, 50S and 70S ribosomal subunits. Further studies demonstrate that GTP is essential for interaction of EngA(MS) with 50S subunit of ribosome and specifically C-terminal domains of EngA(MS) are required to facilitate this interaction. Moreover, EngA(MS) devoid of N-terminal region interacts well with 50S even in the absence of GTP, indicating a regulatory role of the N-terminal domain in EngA(MS)-50S interaction.


Subject(s)
GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Guanosine Diphosphate/genetics , Guanosine Diphosphate/metabolism , Guanosine Triphosphate/genetics , Guanosine Triphosphate/metabolism , Hydrolysis , Molecular Sequence Data , Phylogeny , Protein Structure, Tertiary , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , RNA, Ribosomal, 23S/genetics , RNA, Ribosomal, 23S/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Sequence Alignment/methods , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL