Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Nat Commun ; 15(1): 3059, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637500

ABSTRACT

The 2023 monkeypox (mpox) epidemic was caused by a subclade IIb descendant of a monkeypox virus (MPXV) lineage traced back to Nigeria in 1971. Person-to-person transmission appears higher than for clade I or subclade IIa MPXV, possibly caused by genomic changes in subclade IIb MPXV. Key genomic changes could occur in the genome's low-complexity regions (LCRs), which are challenging to sequence and are often dismissed as uninformative. Here, using a combination of highly sensitive techniques, we determine a high-quality MPXV genome sequence of a representative of the current epidemic with LCRs resolved at unprecedented accuracy. This reveals significant variation in short tandem repeats within LCRs. We demonstrate that LCR entropy in the MPXV genome is significantly higher than that of single-nucleotide polymorphisms (SNPs) and that LCRs are not randomly distributed. In silico analyses indicate that expression, translation, stability, or function of MPXV orthologous poxvirus genes (OPGs), including OPG153, OPG204, and OPG208, could be affected in a manner consistent with the established "genomic accordion" evolutionary strategies of orthopoxviruses. We posit that genomic studies focusing on phenotypic MPXV differences should consider LCR variability.


Subject(s)
Mpox (monkeypox) , Orthopoxvirus , Poxviridae , Humans , Monkeypox virus/genetics , Genomics , Mpox (monkeypox)/genetics
2.
PLoS Biol ; 22(1): e3002089, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38236818

ABSTRACT

Viral respiratory infections are an important public health concern due to their prevalence, transmissibility, and potential to cause serious disease. Disease severity is the product of several factors beyond the presence of the infectious agent, including specific host immune responses, host genetic makeup, and bacterial coinfections. To understand these interactions within natural infections, we designed a longitudinal cohort study actively surveilling respiratory viruses over the course of 19 months (2016 to 2018) in a diverse cohort in New York City. We integrated the molecular characterization of 800+ nasopharyngeal samples with clinical data from 104 participants. Transcriptomic data enabled the identification of respiratory pathogens in nasopharyngeal samples, the characterization of markers of immune response, the identification of signatures associated with symptom severity, individual viruses, and bacterial coinfections. Specific results include a rapid restoration of baseline conditions after infection, significant transcriptomic differences between symptomatic and asymptomatic infections, and qualitatively similar responses across different viruses. We created an interactive computational resource (Virome Data Explorer) to facilitate access to the data and visualization of analytical results.


Subject(s)
Coinfection , Virus Diseases , Viruses , Humans , Coinfection/genetics , Virome , Longitudinal Studies , Viruses/genetics , Virus Diseases/genetics , Virus Diseases/epidemiology , Bacteria/genetics , Gene Expression Profiling
3.
Genome Med ; 13(1): 124, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34362430

ABSTRACT

BACKGROUND: The emergence of SARS-CoV-2 underscores the need to better understand the evolutionary processes that drive the emergence and adaptation of zoonotic viruses in humans. In the betacoronavirus genus, which also includes SARS-CoV and MERS-CoV, recombination frequently encompasses the receptor binding domain (RBD) of the Spike protein, which is responsible for viral binding to host cell receptors. In this work, we reconstruct the evolutionary events that have accompanied the emergence of SARS-CoV-2, with a special emphasis on the RBD and its adaptation for binding to its receptor, human ACE2. METHODS: By means of phylogenetic and recombination analyses, we found evidence of a recombination event in the RBD involving ancestral linages to both SARS-CoV and SARS-CoV-2. We then assessed the effect of this recombination at protein level by reconstructing the RBD of the closest ancestors to SARS-CoV-2, SARS-CoV, and other Sarbecoviruses, including the most recent common ancestor of the recombining clade. The resulting information was used to measure and compare, in silico, their ACE2-binding affinities using the physics-based trRosetta algorithm. RESULTS: We show that, through an ancestral recombination event, SARS-CoV and SARS-CoV-2 share an RBD sequence that includes two insertions (positions 432-436 and 460-472), as well as the variants 427N and 436Y. Both 427N and 436Y belong to a helix that interacts directly with the human ACE2 (hACE2) receptor. Reconstruction of ancestral states, combined with protein-binding affinity analyses, suggests that the recombination event involving ancestral strains of SARS-CoV and SARS-CoV-2 led to an increased affinity for hACE2 binding and that alleles 427N and 436Y significantly enhanced affinity as well. CONCLUSIONS: We report an ancestral recombination event affecting the RBD of both SARS-CoV and SARS-CoV-2 that was associated with an increased binding affinity to hACE2. Structural modeling indicates that ancestors of SARS-CoV-2 may have acquired the ability to infect humans decades ago. The binding affinity with the human receptor would have been subsequently boosted in SARS-CoV and SARS-CoV-2 through further mutations in RBD.


Subject(s)
COVID-19/genetics , Evolution, Molecular , Recombination, Genetic , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , Humans , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism
4.
Mol Biol Evol ; 38(6): 2520-2531, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33585889

ABSTRACT

Viral recombination is a major evolutionary mechanism driving adaptation processes, such as the ability of host-switching. Understanding global patterns of recombination could help to identify underlying mechanisms and to evaluate the potential risks of rapid adaptation. Conventional approaches (e.g., those based on linkage disequilibrium) are computationally demanding or even intractable when sequence alignments include hundreds of sequences, common in viral data sets. We present a comprehensive analysis of recombination across 30 genomic alignments from viruses infecting humans. In order to scale the analysis and avoid the computational limitations of conventional approaches, we apply newly developed topological data analysis methods able to infer recombination rates for large data sets. We show that viruses, such as ZEBOV and MARV, consistently displayed low levels of recombination, whereas high levels of recombination were observed in Sarbecoviruses, HBV, HEV, Rhinovirus A, and HIV. We observe that recombination is more common in positive single-stranded RNA viruses than in negatively single-stranded RNA ones. Interestingly, the comparison across multiple viruses suggests an inverse correlation between genome length and recombination rate. Positional analyses of recombination breakpoints along viral genomes, combined with our approach, detected at least 39 nonuniform patterns of recombination (i.e., cold or hotspots) in 18 viral groups. Among these, noteworthy hotspots are found in MERS-CoV and Sarbecoviruses (at spike, Nucleocapsid and ORF8). In summary, we have developed a fast pipeline to measure recombination that, combined with other approaches, has allowed us to find both common and lineage-specific patterns of recombination among viruses with potential relevance in viral adaptation.


Subject(s)
Evolution, Molecular , Genetic Variation , Genome, Viral , Phylogeny , Recombination, Genetic , Viruses/genetics , Humans
5.
bioRxiv ; 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-32511304

ABSTRACT

The emergence of SARS-CoV-2 underscores the need to better understand the evolutionary processes that drive the emergence and adaptation of zoonotic viruses in humans. In the betacoronavirus genus, which also includes SARS-CoV and MERS-CoV, recombination frequently encompasses the Receptor Binding Domain (RBD) of the Spike protein, which, in turn, is responsible for viral binding to host cell receptors. Here, we find evidence of a recombination event in the RBD involving ancestral linages to both SARS-CoV and SARS-CoV-2. Although we cannot specify the recombinant nor the parental strains, likely due to the ancestry of the event and potential undersampling, our statistical analyses in the space of phylogenetic trees support such an ancestral recombination. Consequently, SARS-CoV and SARS-CoV-2 share an RBD sequence that includes two insertions (positions 432-436 and 460-472), as well as the variants 427N and 436Y. Both 427N and 436Y belong to a helix that interacts directly with the human ACE2 (hACE2) receptor. Reconstruction of ancestral states, combined with protein-binding affinity analyses using the physics-based trRosetta algorithm, reveal that the recombination event involving ancestral strains of SARS-CoV and SARS-CoV-2 led to an increased affinity for hACE2 binding, and that alleles 427N and 436Y significantly enhanced affinity as well. Structural modeling indicates that ancestors of SARS-CoV-2 may have acquired the ability to infect humans decades ago. The binding affinity with the human receptor was subsequently boosted in SARS-CoV and SARS-CoV-2 through further mutations in RBD. In sum, we report an ancestral recombination event affecting the RBD of both SARS-CoV and SARS-CoV-2 that was associated with an increased binding affinity to hACE2.

6.
Nat Cancer ; 1(11): 1113-1127, 2020 11.
Article in English | MEDLINE | ID: mdl-33796864

ABSTRACT

Multi-agent combination chemotherapy can be curative in acute lymphoblastic leukemia (ALL). Still, patients with primary refractory disease or with relapsed leukemia have a very poor prognosis. Here we integrate an in-depth dissection of the mutational landscape across diagnostic and relapsed pediatric and adult ALL samples with genome-wide CRISPR screen analysis of gene-drug interactions across seven ALL chemotherapy drugs. By combining these analyses, we uncover diagnostic and relapse-specific mutational mechanisms as well as genetic drivers of chemoresistance. Functionally, our data identifies common and drug-specific pathways modulating chemotherapy response and underscores the effect of drug combinations in restricting the selection of resistance-driving genetic lesions. In addition, by identifying actionable targets for the reversal of chemotherapy resistance, these analyses open novel therapeutic opportunities for the treatment of relapse and refractory disease.


Subject(s)
Drug Resistance, Neoplasm , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Adult , Child , Drug Resistance, Neoplasm/genetics , Humans , Mutation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prognosis , Recurrence
7.
Cell ; 178(6): 1526-1541.e16, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31474372

ABSTRACT

While knowledge of protein-protein interactions (PPIs) is critical for understanding virus-host relationships, limitations on the scalability of high-throughput methods have hampered their identification beyond a number of well-studied viruses. Here, we implement an in silico computational framework (pathogen host interactome prediction using structure similarity [P-HIPSTer]) that employs structural information to predict ∼282,000 pan viral-human PPIs with an experimental validation rate of ∼76%. In addition to rediscovering known biology, P-HIPSTer has yielded a series of new findings: the discovery of shared and unique machinery employed across human-infecting viruses, a likely role for ZIKV-ESR1 interactions in modulating viral replication, the identification of PPIs that discriminate between human papilloma viruses (HPVs) with high and low oncogenic potential, and a structure-enabled history of evolutionary selective pressure imposed on the human proteome. Further, P-HIPSTer enables discovery of previously unappreciated cellular circuits that act on human-infecting viruses and provides insight into experimentally intractable viruses.


Subject(s)
Host-Pathogen Interactions , Protein Interaction Mapping , Proteome/metabolism , Viral Proteins/metabolism , Zika Virus/physiology , Animals , Atlases as Topic , Chlorocebus aethiops , Computer Simulation , Datasets as Topic , HEK293 Cells , Humans , MCF-7 Cells , Proteome/chemistry , Vero Cells , Viral Proteins/chemistry
8.
Genome Biol Evol ; 10(2): 657-666, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29325030

ABSTRACT

Many viroids and RNA viruses have genomes that exhibit secondary structure, with paired nucleotides forming stems and loops. Such structures violate a key assumption of most methods of phylogenetic reconstruction, that sequence change is independent among sites. However, phylogenetic analyses of these transmissible agents rarely use evolutionary models that account for RNA secondary structure. Here, we assess the effect of using RNA-specific nucleotide substitution models on the phylogenetic inference of viroids and RNA viruses. We obtained data sets comprising full-genome nucleotide sequences from six viroid and ten single-stranded RNA virus species. For each alignment, we inferred consensus RNA secondary structures, then evaluated different DNA and RNA substitution models. We used model selection to choose the best-fitting model and evaluate estimated Bayesian phylogenies. Further, for each data set we generated and compared Robinson-Foulds (RF) statistics in order to test whether the distributions of trees generated under alternative models are notably different to each other. In all alignments, the best-fitting model was one that considers RNA secondary structure: RNA models that allow a nonzero rate of double substitution (RNA16A and RNA16C) fitted best for both viral and viroid data sets. In 14 of 16 data sets, the use of an RNA-specific model led to significantly longer tree lengths, but only in three cases did it have a significant effect on RFs. In conclusion, using RNA model when undertaking phylogenetic inference of viroids and RNA viruses can provide a better model fit than standard approaches and model choice can significantly affect branch length estimates.


Subject(s)
Models, Genetic , Phylogeny , RNA Viruses/genetics , Viroids/genetics
9.
Sci Rep ; 7(1): 11584, 2017 09 14.
Article in English | MEDLINE | ID: mdl-28912478

ABSTRACT

HIV infections are still a very serious concern for public heath worldwide. We have applied molecular evolution methods to study the HIV-1 epidemics in the Comunidad Valenciana (CV, Spain) from a public health surveillance perspective. For this, we analysed 1804 HIV-1 sequences comprising protease and reverse transcriptase (PR/RT) coding regions, sampled between 2004 and 2014. These sequences were subtyped and subjected to phylogenetic analyses in order to detect transmission clusters. In addition, univariate and multinomial comparisons were performed to detect epidemiological differences between HIV-1 subtypes, and risk groups. The HIV epidemic in the CV is dominated by subtype B infections among local men who have sex with men (MSM). 270 transmission clusters were identified (>57% of the dataset), 12 of which included ≥10 patients; 11 of subtype B (9 affecting MSMs) and one (n = 21) of CRF14, affecting predominately intravenous drug users (IDUs). Dated phylogenies revealed these large clusters to have originated from the mid-80s to the early 00 s. Subtype B is more likely to form transmission clusters than non-B variants and MSMs to cluster than other risk groups. Multinomial analyses revealed an association between non-B variants, which are not established in the local population yet, and different foreign groups.


Subject(s)
HIV Infections/epidemiology , HIV Infections/virology , HIV-1/genetics , Adolescent , Adult , Aged , Evolution, Molecular , Female , Genotype , HIV Infections/transmission , HIV-1/classification , Humans , Male , Middle Aged , Molecular Epidemiology , Population Surveillance , Reassortant Viruses/genetics , Risk Factors , Spain/epidemiology , Young Adult
10.
PLoS One ; 12(2): e0171062, 2017.
Article in English | MEDLINE | ID: mdl-28152089

ABSTRACT

We describe and characterize an exceptionally large HIV-1 subtype B transmission cluster occurring in the Comunidad Valenciana (CV, Spain). A total of 1806 HIV-1 protease-reverse transcriptase (PR/RT) sequences from different patients were obtained in the CV between 2004 and 2014. After subtyping and generating a phylogenetic tree with additional HIV-1 subtype B sequences, a very large transmission cluster which included almost exclusively sequences from the CV was detected (n = 143 patients). This cluster was then validated and characterized with further maximum-likelihood phylogenetic analyses and Bayesian coalescent reconstructions. With these analyses, the CV cluster was delimited to 113 patients, predominately men who have sex with men (MSM). Although it was significantly located in the city of Valencia (n = 105), phylogenetic analyses suggested this cluster derives from a larger HIV lineage affecting other Spanish localities (n = 194). Coalescent analyses estimated its expansion in Valencia to have started between 1998 and 2004. From 2004 to 2009, members of this cluster represented only 1.46% of the HIV-1 subtype B samples studied in Valencia (n = 5/143), whereas from 2010 onwards its prevalence raised to 12.64% (n = 100/791). In conclusion, we have detected a very large transmission cluster in the CV where it has experienced a very fast growth in the recent years in the city of Valencia, thus contributing significantly to the HIV epidemic in this locality. Its transmission efficiency evidences shortcomings in HIV control measures in Spain and particularly in Valencia.


Subject(s)
HIV Infections/transmission , HIV-1/genetics , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , Female , HIV Infections/epidemiology , HIV Infections/virology , HIV Protease/genetics , HIV Reverse Transcriptase/genetics , HIV-1/drug effects , HIV-1/pathogenicity , Homosexuality, Male , Humans , Male , Phylogeny , Spain/epidemiology , pol Gene Products, Human Immunodeficiency Virus/genetics
11.
Infect Genet Evol ; 49: 104-110, 2017 04.
Article in English | MEDLINE | ID: mdl-28087495

ABSTRACT

Genotype 1 of the hepatitis C virus (HCV) is the most prevalent of the variants of this virus. Its two main subtypes, HCV-1a and HCV-1b, are associated to differences in epidemic features and risk groups, despite sharing similar features in most biological properties. We have analyzed the impact of positive selection on the evolution of these variants using complete genome coding regions, and compared the levels of genetic variability and the distribution of positively selected sites. We have also compared the distributions of positively selected and conserved sites considering different factors such as RNA secondary structure, the presence of different epitopes (antibody, CD4 and CD8), and secondary protein structure. <10% of the genome was found to be under positive selection, and purifying selection was the main evolutionary process acting in both subtypes. We found differences in the number of positively selected sites between subtypes in several genes (Core, HVR2 in E2, P7, helicase in NS3 and NS4a). Heterozygosity values in positively selected sites and the rate of non-synonymous substitutions were significantly higher in subtype HCV-1b. Logistic regression analyses revealed that similar selective forces act at the genome level in both subtypes: RNA secondary structure and CD4 T-cell epitopes are associated with conserved sites, while CD8 T-cell epitopes are associated with positive selection in both subtypes. These results indicate that similar selective constraints are acting along HCV-1a and HCV-1 b genomes, despite some differences in the distribution of positively selected sites at independent genes.


Subject(s)
Epitopes, T-Lymphocyte/genetics , Genome, Viral , Hepacivirus/genetics , Phylogeny , RNA, Viral/genetics , Viral Proteins/genetics , Amino Acid Sequence , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Evolution, Molecular , Genetic Variation , Genotype , Hepacivirus/classification , Hepacivirus/immunology , Hepatitis C Antibodies/chemistry , Hepatitis C Antibodies/genetics , Hepatitis C, Chronic/genetics , Hepatitis C, Chronic/immunology , Hepatitis C, Chronic/virology , Humans , RNA, Viral/chemistry , RNA, Viral/immunology , Selection, Genetic , Sequence Analysis, DNA , Viral Proteins/chemistry , Viral Proteins/immunology
12.
Virus Evol ; 3(2): vex029, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29942652

ABSTRACT

HIV-1M causes most infections in the AIDS pandemic. Its genetic diversity is defined by nine pure subtypes and more than sixty recombinant forms. We have performed a comparative analysis of the evolutionary rate of five pure subtypes (A1, B, C, D, and G) and two circulating recombinant forms (CRF01_AE and CRF02 AG) using data obtained from nearly complete genome coding sequences. Times to the most recent common ancestor (tMRCA) and substitution rates of these HIV genomes, and their genomic partitions, were estimated by Bayesian coalescent analyses. Genomic substitution rate estimates were compared between the HIV-1 datasets analyzed by means of randomization tests. Significant differences in the rate of evolution were found between subtypes, with subtypes C and A1 and CRF01_AE displaying the highest rates. On the other hand, CRF02_AG and subtype D were the slowest evolving types. Using a different molecular clock model for each genomic partition led to more precise tMRCA estimates than when linking the same clock along the HIV genome. Overall, the earliest tMRCA corresponded to subtype A1 (median = 1941, 95% HPD = 1943-55), whereas the most recent tMRCA corresponded to subtype G and CRF01_AE subset 3 (median = 1971, 95% HPD = 1967-75 and median = 1972, 95% HPD = 1970-75, respectively). These results suggest that both biological and epidemiological differences among HIV-1M subtypes are reflected in their evolutionary dynamics. The estimates obtained for tMRCAs and substitution rates provide information that can be used as prior distributions in future Bayesian coalescent analyses of specific HIV-1 subtypes/CRFs and genes.

13.
Antimicrob Agents Chemother ; 60(4): 2402-16, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26856832

ABSTRACT

There is no comprehensive study available on the natural hepatitis C virus (HCV) polymorphism in sites associated with resistance including all viral genotypes which may present variable susceptibilities to particular direct-acting antivirals (DAAs). This study aimed to analyze the frequencies, genetic barriers, and evolutionary histories of naturally occurring resistance-associated variants (RAVs) in the six main HCV genotypes. A comprehensive analysis of up to 103 RAVs was performed in 2,901, 2,216, and 1,344 HCV isolates for the NS3, NS5A, and NS5B genes, respectively. We report significant intergenotypic differences in the frequencies of natural RAVs for these three HCV genes. In addition, we found a low genetic barrier for the generation of new RAVs, irrespective of the viral genotype. Furthermore, in 1,126 HCV genomes, including sequences spanning the three genes, haplotype analysis revealed a remarkably high frequency of viruses carrying more than one natural RAV to DAAs (53% of HCV-1a, 28.5% of HCV-1b, 67.1% of HCV-6, and 100% of genotype 2, 3, 4, and 5 haplotypes). With the exception of HCV-1a, the most prevalent haplotypes showed RAVs in at least two different viral genes. Finally, evolutionary analyses revealed that, while most natural RAVs appeared recently, others have been efficiently transmitted over time and cluster in well-supported clades. In summary, and despite the observed high efficacy of DAA-based regimens, we show that naturally occurring RAVs are common in all HCV genotypes and that there is an overall low genetic barrier for the selection of resistance mutations. There is a need for natural DAA resistance profiling specific for each HCV genotype.


Subject(s)
Drug Resistance, Viral/genetics , Genome, Viral , Haplotypes , Hepacivirus/genetics , Viral Nonstructural Proteins/genetics , Antiviral Agents/pharmacology , Chromosome Mapping , Hepacivirus/drug effects , Hepacivirus/isolation & purification , Hepatitis C, Chronic/epidemiology , Hepatitis C, Chronic/virology , Humans , Mutation, Missense , Polymorphism, Genetic
14.
J Clin Virol ; 69: 146-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26209397

ABSTRACT

BACKGROUND: HIV-1 CRF19_cpx, is a recombinant variant found almost exclusively in Cuba and recently associated to a faster AIDS onset. Infection with this variant leads to higher viral loads and levels of RANTES and CXCR4 co-receptor use. OBJECTIVES: The goal of this study was to assess the presence of CRF19_cpx in the Spanish province of Valencia, given its high pathogenicity. STUDY DESIGN: 1294 HIV-1 protease-reverse transcriptase (PR/RT) sequences were obtained in Valencia (Spain), between 2005 and 2014. After subtyping, the detected CRF19_cpx sequences were aligned with 201 CRF19_cpx and 66 subtype D sequences retrieved from LANL, and subjected to maximum-likelihood phylogenetic analyses and Bayesian coalescent reconstructions. The presence of resistance mutations in the PR/RT region of these sequences was also analyzed. RESULTS: Among the 9 CRF19_cpx sequences from different patients found (prevalence <0.1%), 7 grouped in two well-supported clades (groups A, n=4, and B, n=3), suggesting the existence of at least two independent introductions which subsequently started to expand in the studied Spanish region. Unprotected sex between men was the only known transmission route. Coalescent analyses suggested that the introductions in Valencia occurred between 2008 and 2010. Resistance mutations in the RT region were found in all sequences from group A (V139D) and in two sequences from group B (E138A). CONCLUSIONS: This study reports for the first time the recent expansion of CRF19_cpx outside Cuba. Our results suggest that CRF19_cpx might become an emerging HIV variant in Spain, affecting Spanish native MSM and not only Cuban migrants.


Subject(s)
HIV Infections/virology , HIV-1/classification , HIV-1/genetics , Bayes Theorem , HIV Infections/epidemiology , HIV Protease/genetics , HIV Reverse Transcriptase/genetics , HIV-1/isolation & purification , Humans , Likelihood Functions , Mutation , Phylogeny , Phylogeography , RNA, Viral/analysis , Spain/epidemiology
15.
Rev. esp. salud pública ; 88(6): 819-828, nov.-dic. 2014. ilus
Article in Spanish | IBECS | ID: ibc-127460

ABSTRACT

Fundamentos: La epidemiología molecular es una nueva disciplina que permite la integración de la información sobre la variabilidad genética de patógenos infecciosos con su difusión en la población y subgrupos de la misma incluyendo, por ejemplo, las mutaciones de resistencia a antibióticos y antivirales. El objetivo es conocer qué posibles diferencias existe en las características genéticas de los agentes infecciosos que afectan a las poblaciones inmigrante y autóctoctona en España.. Métodos: Se revisaron artículos originales publicados entre 1998- 2013, con las palabras clave "epidemiología molecular", "tipado molecular", "secuenciación", "inmigrante", "España". Resultados: De un total de 267 artículos identificados inicialmente, 50 pasaron los diferentes filtros establecidos. De ellos, 36 analizan las infecciones por Mycobacterium tuberculosis y VIH, seguidos de los que analizan infecciones por Staphylococcus aureus (3) y el Virus de la Hepatitis B (3). Conclusiones: Los objetivos principales de estos trabajos fueron el tipado del patógeno y la determinación de la frecuencia de mutaciones de resistencia. Los estudios más frecuentes correspondieron a cohortes retrospectivas, seguidos por los estudios ecológicos y los ensayos clínicos. En general los estudios son descriptivos y su ámbito por el tipo y tamaño de muestra es bastante restringido. En varios se determina que las cepas o variantes del patógeno encontradas en inmigrantes tienen su origen más probable en sus países de origen, si bien otros también ponen de manifiesto la transmisión desde la población autóctona a la inmigrante (AU)


Background: Molecular epidemiology is a new scientific discipline which allows to integrate information on the genetic variation of infectious pathogens with their diffusion in a population and its subgroups including, for instance, resistance mutations to antibiotics and antiretrovirals. We present the results of an analysis of scientific publications that analyze the health status of the immigrant population in Spain from a molecular epidemiology perspective. Methods:We reviewed original articles published in 1998-2014 with he keywords "molecular epidemiology", "molecular typing", "sequencing", "immigrant", and "Spain". Results: Froma total of 267 articles identified initially, only 50 passed through the established filters. Most of them (36) analyzed infections by Mycobacterium tuberculosis (3) and HIV (3), followed at a large distance by Staphylococcus aureus and hepatitis B virus. The main goal of these works was the typing of the pathogen and to determine the frequency of resistance mutations. Conclusion: Is difficult to generalize the conclusions from the analyzed articles because most of them have a purely descriptive and quite restricted scope, considering the type and size of the samples studied. Several studies are focused on the most likely origin for the strains or variants of the pathogen but others also reveal transmissions from the local to the immigrant populations (AU)


Subject(s)
Humans , Male , Female , Molecular Epidemiology/methods , Molecular Epidemiology/standards , Molecular Epidemiology/trends , Transients and Migrants/statistics & numerical data , Mycobacterium tuberculosis/isolation & purification , Staphylococcus aureus/isolation & purification , Molecular Epidemiology/instrumentation , Molecular Epidemiology/organization & administration , Molecular Epidemiology/statistics & numerical data , Staphylococcus/isolation & purification , Hepatitis B/epidemiology , Hepatitis B/prevention & control , Drug Resistance, Microbial , Public Health/methods , Public Health/standards
16.
Rev Esp Salud Publica ; 88(6): 819-28, 2014.
Article in Spanish | MEDLINE | ID: mdl-25418571

ABSTRACT

BACKGROUND: Molecular epidemiology is a new scientific discipline which allows to integrate information on the genetic variation of infectious pathogens with their diffusion in a population and its subgroups including, for instance, resistance mutations to antibiotics and antiretrovirals. We present the results of an analysis of scientific publications that analyze the health status of the immigrant population in Spain from a molecular epidemiology perspective. METHODS: We reviewed original articles published in 1998-2014 with the keywords "molecular epidemiology", "molecular typing", "sequencing", "immigrant", and "Spain". RESULTS: From a total of 267 articles identified initially, only 50 passed through the established filters. Most of them (36) analyzed infections by Mycobacterium tuberculosis (3) and HIV (3), followed at a large distance by Staphylococcus aureus and hepatitis B virus. The main goal of these works was the typing of the pathogen and to determine the frequency of resistance mutations. CONCLUSION: Is difficult to generalize the conclusions from the analyzed articles because most of them have a purely descriptive and quite restricted scope, considering the type and size of the samples studied. Several studies are focused on the most likely origin for the strains or variants of the pathogen but others also reveal transmissions from the local to the immigrant populations.


Subject(s)
Emigrants and Immigrants , HIV Infections/epidemiology , Hepatitis B virus/genetics , Hepatitis B/epidemiology , Mycobacterium tuberculosis/genetics , Staphylococcal Infections/epidemiology , Staphylococcus aureus/genetics , Tuberculosis/epidemiology , HIV Infections/ethnology , Humans , Molecular Epidemiology , Spain/epidemiology , Staphylococcal Infections/ethnology , Tuberculosis/ethnology
SELECTION OF CITATIONS
SEARCH DETAIL
...