Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chemosphere ; 357: 141786, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537716

ABSTRACT

Arsenic (As) contaminated water, especially groundwater reservoirs, is a major issue worldwide owing to its hazardous consequences on human health and the global environment issues. Also, irrigating agricultural fields with As-contaminated water not only produces an accumulation of As in the soil but also compromises food safety due to As entering into agricultural products. Hence, there is an urgent need to develop an efficient method for As removal in water. Fe-based MOFs have attained special attention due to their low toxicity, high water stability, better physical and chemical properties, and high abundance of iron. The arsenic species removal by Fe-MOF follows the adsorption and oxidation mechanism where As (III) converts into As (V). Moreover, the adsorption mechanism is facilitated by electrostatic interactions, H-bonding, acid-base interaction, hydrophobic interactions, van der Waals forces, π-π stacking interactions, and coordinative bindings responsible for Fe-O-As bond generation. This review thoroughly recapitulates and analyses recent advancements in the facile synthesis and potential application of Fe-based MOF adsorbents for the elimination of As ions. The most commonly employed hydro/solvothermal, ultrasonic, microwave-assisted, mechanochemical, and electrochemical synthesis for Fe-MOF has been discussed along with their adsorptive and oxidative mechanisms involved in arsenic removal. The effects of factors like pH and coexisting ions have also been discussed. Lastly, the article also proposed the prospects for developing the application of Fe-based MOF in treating As-contaminated water.


Subject(s)
Arsenic , Iron , Metal-Organic Frameworks , Water Pollutants, Chemical , Water Purification , Arsenic/chemistry , Arsenic/analysis , Adsorption , Water Pollutants, Chemical/chemistry , Iron/chemistry , Water Purification/methods , Metal-Organic Frameworks/chemistry , Catalysis , Oxidation-Reduction , Groundwater/chemistry
2.
Environ Manage ; 73(3): 471-480, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38091027

ABSTRACT

The COVID-19 pandemic has caused unprecedented global health and economic crises. The emergence of long COVID-19 has raised concerns about the interplay between SARS-CoV-2 infections, climate change, and the environment. In this context, a concise analysis of the potential long-term effects of the COVID-19 epidemic along with the awareness aboutenvironmental issues are realized. While COVID-19 effects in the short-term have reduced environmental air pollutants and pressures, CO2 emissions are projected to increase as the economy recovers and growth rates return to pre-COVID-19 levels. This review discusses the systematic effects of both the short-term and long-term effects of the pandemic on the clean energy revolution and environmental issues. This article also discusses opportunities to achieve long-term environmental benefits and emphasizes the importance of future policies in promoting global environmental sustainability. Future directions for growth and recovery are presented to cope with long COVID-19 epidemic along with the critical findings focussing on various aspects: waste management, air quality improvement.


Subject(s)
Air Pollution , COVID-19 , Humans , Air Pollution/analysis , COVID-19/epidemiology , Pandemics , Post-Acute COVID-19 Syndrome , SARS-CoV-2
3.
Environ Res ; 232: 116353, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37295591

ABSTRACT

Covalent organic frameworks (COFs) based on core@shell nanohybrids have recently received significant attention and have become one of the most promising strategies for improving the stability and catalytic activity of COFs. Compared with traditional core@shell, COF-based core@shell hybrids own remarkable advantages, including size-selective reactions, bifunctional catalysis, and integration of multiple functions. These properties could enhance the stability and recyclability, resistance to sintering, and maximize the electronic interaction between the core and the shell. The activity and selectivity of COF-based core@shell could be simultaneously improved by taking benefit of the existing synergy between the functional encapsulating shell and the covered core material. Considering that, we have highlighted various topological diagrams and the role of COFs in COF-based core@shell hybrid for activity and selectivity enhancement. This concept article provides all-inclusive advances in the design and catalytic applications of COF-based core@shell hybrids. Various synthetic techniques have been developed for the facile tailoring of functional core@shell hybrids, including novel seed growth, in-situ, layer-by-layer, and one-pot method. Importantly, charge dynamics and structure-performance relationships are investigated through different characterization techniques. Different COF-based core@shell hybrids with established synergistic interactions have been detailed, and their influence on stability and catalytic efficiency for various applications is explained and discussed in this contribution. A comprehensive discussion on the remaining challenges associated with COF-based core@shell nanoparticles and research directions has also been provided to deliver insightful ideas for additional future developments.


Subject(s)
Metal-Organic Frameworks , Nanoparticles , Nanostructures , Catalysis , Reproduction
4.
Environ Res ; 222: 115349, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36709022

ABSTRACT

Architecting a desirable and highly efficient nanocomposite for applications like adsorption, catalysis, etc. has always been a challenge. Metal Organic Framework (MOF)-based hierarchical composite has perceived popularity as an advanced adsorbent and catalyst. Hierarchically structured MOF material can be modulated to allow the surface interaction (external or internal) of MOF with the molecules of interest. They are well endowed with tunable functionality, high porosity, and increased surface area epitomizing mass transfer and mechanical stability of the fabricated nanostructure. Additionally, the anticipated optimization of nanocomposite can only be acquired by a thorough understanding of the synthesis techniques. This review starts with a brief introduction to MOF and the requirement for advanced nanocomposites after the setback faced by conventional MOF structures. Further, we discussed the background of MOF-based hierarchical composites followed by synthetic techniques including chemical and thermal treatment. It is important to rationally validate the successful nanocomposite fabrication by characterization techniques, an overview of challenges, and future perspectives associated with MOF-based hierarchically structured nanocomposite.


Subject(s)
Metal-Organic Frameworks , Nanocomposites , Water Purification , Nanocomposites/chemistry , Catalysis , Adsorption
5.
Environ Res ; 218: 114982, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36495966

ABSTRACT

Dual-pore covalent organic frameworks (COFs) offer a molecular scaffold for introducing building blocks into periodically organized polygonal skeletons to produce fascinating structural features. The rapid development of this material has attracted intensive interest from researchers with diverse expertise. This review selects the leading scientific findings about dual-pore COFs and highlights their functions and perspectives on design, structure properties, and synthesis strategies. Dual-pore COFs, as newly hetero-pore COFs by integrating particular pores into one polygonal skeleton, have been compared to conventional COFs. Dual-pore COFs display hierarchical/heterogeneous porosities and homogeneous porosity, which endow them with exceptional features involving mass diffusion, charge transfer, and large surface area with abundant active sites. Additionally, the strategic dual-pore design by opting for different approaches, such as integration of [D2h + C2] symmetries, kagome-type lattices, and other symmetric arrangements of monomers, are inclusively discussed. Identification and construction of dual-pores in COFs via optimal synthetic methods, such as desymmetrization, multiple linking sites, and orthogonal reactions, are highlighted as the primary pore engineering routes to simultaneously regulate the growth and alter the characteristics of COFs for promising applications. Lastly, a focused discussion on various challenges and critical fundamentals of dual-pore engineering is successfully outlined, with potential prospects of introducing dual-pore in COFs.


Subject(s)
Metal-Organic Frameworks , Diffusion , Porosity
6.
Chemosphere ; 313: 137610, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36563726

ABSTRACT

Formulation of heterojunction with remarkable high efficiency by utilizing solar light is promising to synchronously overcome energy and environmental crises. In this concern, hexagonal-borocarbonitride (h-BCN) based Z-schemes have proved potential candidates due to their spatially separated oxidation and reduction sites, robust light-harvesting ability, high charge pair migration and separation, and strong redox ability. H-BCN has emerged as a hotspot in the research field as a metal-free photocatalyst with a tunable bandgap range of 0-5.5 eV. The BCN photocatalyst displayed synergistic benefits of both graphene and boron nitride. Herein, the review demonstrates the current state-of-the-art in the Z-scheme photocatalytic application with a special emphasis on the predominant features of their photoactivity. Initially, fundamental aspects and various synthesis techniques are discussed, including thermal polymerization, template-assisted, and template-free methods. Afterward, the reaction mechanism of direct Z-scheme photocatalysts and indirect Z-scheme (all-solid-state) are highlighted. Moreover, the emerging Step-scheme (S-scheme) systems are briefly deliberated to understand the charge transfer pathway mechanism with an induced internal electric field. This review critically aims to comprehensively summarize the photo-redox applications of various h-BCN-based heterojunction photocatalysts including CO2 photoreduction, H2 evolution, and pollutants degradation. Finally, some challenges and future direction of h-BCN-based Z-scheme photocatalyst in environmental remediation are also proposed.


Subject(s)
Environmental Pollutants , Environmental Restoration and Remediation , Graphite , Electricity , Physical Phenomena
7.
J Environ Chem Eng ; 10(4): 107894, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35578627

ABSTRACT

The mass immunization is the prioritised post-pandemic phase offering preventive countermeasure for COVID-19 pandemic. However, it is crucial to tackle the environmental impact of COVID-19 vaccine waste for sustainable vaccination management because a prolonged immunisation campaign is expected. As the pace of vaccine production, distribution and mass vaccination has been expedited, there is a simultaneous rise in plastic derived vaccine waste including syringes, needles, used/unused vaccine vials, vaccine packaging, and protective gear (surgical facemasks, gloves, face shields, etc). Henceforth, in view of the repercussions of heaping plastic waste in the environment, this article provides a perspective on the usage of synthetic and natural materials as potential substituents for vaccination tools. The biodegradable polymeric gums such as cellulose, gellan, pectin, etc. have been successfully applied for the fabrication of surgical facemasks. The highly suggestive practice is replacement of conventional polypropylene based plastics with bioplastics or paper for vaccine packaging. The usage of biodegradable bio-plastics as packaging material along with environmentally friendly face masks can help to achieve the zero waste approach. The discussion in the article significantly highlights the necessity of opting sustainable solutions of disinfecting and substituting vaccination tools for an environment friendly ongoing vaccination campaign.

8.
J Environ Chem Eng ; 10(3): 107527, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35280853

ABSTRACT

Coronavirus disease-2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been one of the most challenging worldwide epidemics of recent times. Semiconducting materials (photocatalysts) could prove effectual solar-light-driven technology on account of variant reactive oxidative species (ROS), including superoxide (•O2 - ) and hydroxyl (•OH) radicals either by degradation of proteins, DNA, RNA, or preventing cell development by terminating cellular membrane. Graphene-based materials have been exquisitely explored for antiviral applications due to their extraordinary physicochemical features including large specific surface area, robust mechanical strength, tunable structural features, and high electrical conductivity. Considering that, the present study highlights a perspective on the potentials of graphene based materials for photocatalytic antiviral activity. The interaction of virus with the surface of graphene based nanomaterials and the consequent physical, as well as ROS induced inactivation process, has been highlighted and discussed. It is highly anticipated that the present review article emphasizing mechanistic antiviral insights could accelerate further research in this field.

9.
J Hazard Mater Adv ; 7: 100097, 2022 Aug.
Article in English | MEDLINE | ID: mdl-37520799

ABSTRACT

The appearance of the contagious virus COVID-19, several revelations and environmental health experts punctually predicted the possibly disastrous public health complications of coexisting catching and airborne contamination-arbitrated disease. But much attention has been given on the outdoor-mediated interactions. Almost 3.8 million premature deaths occur every year globally due to the illness from indoor air pollution. Considering the human staying longer span indoors due to restricted human activities or work from home, the indoor air quality (IAQ) might show prominent role for individual health life. Currently, the Environmental Protection Agency (EPA) ensures no regulation of indoor airborne pollution. Herein, the paper underlines the common bases of indoor air pollution, poor IAQ, and impacts of the aerosolized airborne particles on the human health. In order to address these challenges and collective contagion events in indoor environment, several emerging control techniques and preventive sustainable solutions are suggested. By this, more innovations need to be investigated in future to measure the impact of indoor air pollution on individual health.

10.
Sci Total Environ ; 813: 151881, 2022 Mar 20.
Article in English | MEDLINE | ID: mdl-34826493

ABSTRACT

The vaccine innovation is a ubiquitous preventive measure to the transmission of highly infectious SARS-COV-2. The ongoing mass coronavirus vaccination programmes have inadvertently become the bulk producers of biomedical and plastic waste triggering severe impact on the environment. The sustainable management of bio hazardous vaccine waste in particular; syringes, needles, used/un-used vials and single-use plastic equipment is of utmost importance. This perspective presents a critical point of view in terms of the generated vaccine waste and the subsequent knock-on effect on all aspects of ecosystem. The discussion includes dire consequences due to the release of huge amount of plastic-based personal protective equipment into marine environment. The pivotal crisis of CO2 emission during the manufacture and storage of different vaccines has contributed to global warming. The unavoidable generation of microfibers upon incineration, autoclaving, pyrolysis and open dumping of vaccine waste has further jeopardized the environment. In this vein, exploration of biodegradable materials for vaccine inoculation and development of green technologies for sound waste management is suggested to mitigate the environment pollution.


Subject(s)
COVID-19 , Vaccines , Waste Management , COVID-19 Vaccines , Ecosystem , Humans , Plastics , SARS-CoV-2 , Vaccination
11.
Environ Res ; 197: 111134, 2021 06.
Article in English | MEDLINE | ID: mdl-33836181

ABSTRACT

The realization of artificial photosynthesis in the photocatalytic CO2 transformation into valuable chemicals or solar fuels, such as CO, CH4, HCOOH, and CH3OH, by solar-light harvesting is a promising solution to both global-warming and energy-supply issues. Recently, zinc oxide (ZnO) has emerged as an excellent oxidative photocatalyst among non-titanium metal oxides due to its availability, outstanding semiconducting and optical properties, non-toxicity, affordability, and ease of synthesis. However, ZnO wide bandgap and inability to absorb in the visible region has demanded particular modification for its practical use as a sustainable photocatalyst. This review provides a panorama of the latest advancement on ZnO photocatalysis for CO2 reduction with an overview of fundamental aspects. Various modification strategies such as transition metal and non-metal doping, loading of plasmonic metals, and surface vacancy engineering for tunning the properties and improving the performance of ZnO are elaborated. Composites or hetero-structuralization-based Z-scheme formation is also presented along with a detailed photocatalytic reduction mechanism. Moreover, a new novel Step-scheme (S-scheme) heterostructure modification with a charge transfer pathway mechanism is also highlighted. Finally, the key challenges and new directions in this field are proposed to provide a new vision for further improvement for ZnO-based photocatalytic CO2 conversion.


Subject(s)
Zinc Oxide , Carbon Dioxide , Catalysis , Light , Oxides
SELECTION OF CITATIONS
SEARCH DETAIL