Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ther Deliv ; 15(3): 165-179, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38282577

ABSTRACT

Aim: The clinical application of conventional oral dosage form of itraconazole is limited due to its poor bioavailability. The aim of the study was to develop nanoemulgel of Itraconazole for topical delivery. Method: Nanoemulsions were prepared, optimized and further incorporated into a gel and evaluated for homogeneity, pH, viscosity, spreadability, in vitro drug release and skin irritation studies. Results: Cumulative drug release from nanoemulsions was within the range of 37.24 to 47.63% at 10 h. Drug release % for all the nanoemulgel formulations at10 h was 32.39, 39.75 and 45.9% respectively. Nanoemulgel was non-irritant as demonstrated by skin irritation studies in animals. Conclusion: Itraconazole nanoemulgels were proved to be potential for effective topical delivery of drug with enhanced bioavailability.


Subject(s)
Drug Delivery Systems , Mycoses , Animals , Itraconazole , Emulsions , Drug Liberation
2.
Drug Dev Ind Pharm ; 50(1): 68-77, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38148515

ABSTRACT

AIM: The primary objective of the research was to develop a cubosomal in situ gel encapsulated with Triamcinolone acetonide (TCA) in order to enhance its penetration through the blood-brain barrier (BBB) when administered via the intranasal route, thus enabling efficient and rapid action. METHOD: Cubosomes were formulated by top-down approach using glyceryl monooleate (GMO), using pluronics127 (PF127) and polyvinyl alcohol (PVA) in varying proportions based on the Box-Behnken design. High resolution transmission electron microscopy (HR-TEM) analysis confirmed the morphology of the cubosomes. The in situ gel was formulated and optimized. Experiments involving ex vivo permeation and histopathology analyses were undertaken to evaluate drug permeation and tissue effects. RESULTS: The cubosomes exhibited a particle size (PS) of 197.9 nm, zeta potential (ZP) of -31.11 mV, and entrapment efficacy (EE) of 84.31%, with low deviation. Batch F4 (19% PF127) showed favorable results. In vitro and ex vivo permeation studies revealed drug release of 78.59% and 76.65%, respectively, after 8 h. Drug release followed the Hixson Crowell model of release kinetics. The histopathological examination revealed no signs of toxicity or adverse effects on the nasal mucosa of the sheep. The formulation exhibited short-term stability, maintaining its integrity and properties when stored at room temperature. CONCLUSION: The utilization of an intranasal cubosomal in situ gel encapsulated with TCA was anticipated to lower intracranial pressure and improve patient adherence by offering effective relief for individuals suffering from Brain edema. This efficacy is attributed to its rapid onset of action and its safe and well-tolerated dosage form.


Subject(s)
Drug Carriers , Triamcinolone Acetonide , Humans , Animals , Sheep , Administration, Intranasal , Drug Carriers/pharmacology , Triamcinolone Acetonide/pharmacology , Brain , Nasal Mucosa , Particle Size , Gels/pharmacology
3.
Ther Deliv ; 14(7): 443-458, 2023 07.
Article in English | MEDLINE | ID: mdl-37464784

ABSTRACT

The effectiveness of pharmaceutical drugs depends not only on their active components and manufacturing processes, but also on the role played by pharmaceutical excipients. The traditional definition of excipients as inactive and cost-effective substances has evolved significantly. They are now recognized as essential elements of drug formulations, constituting 80-90% of the final product. The rapid advancements in delivery systems, along with scientific, regulatory, financial and technological developments in biopharmaceutics, have generated renewed interest in the use and functionality of excipients, especially in solid dosage forms. This review focuses on the categorization of excipients according to the International Pharmaceutical Excipient Council (IPEC) and the establishment of guidelines for evaluating the safety of a new proposed excipient.


Excipients are matter we add to medicine when we make it. They give the medicine different qualities, like making it easier to dissolve, stick together, or slide smoothly. But if we use too many excipients, it can make the medicine less stable and more expensive. To avoid these problems, we can use special excipients that can do more than one thing. These multi-purpose excipients make the medicine work better, stay stable and cost less.


Subject(s)
Chemistry, Pharmaceutical , Excipients , Drug Compounding , Biopharmaceutics , Pharmaceutical Preparations
4.
Pharm Nanotechnol ; 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37259931

ABSTRACT

BACKGROUND: Nebivolol HCl is a unique third-generation beta blocker that has less oral bioavailability and exhibits various adverse effects like gastrointestinal disturbance and abdominal pain. OBJECTIVE: This study aimed to formulate and evaluate nebivolol HCl transferosomal transdermal patches to reduce the problems associated with oral delivery of the drug and enhancement of drug permeation through the skin. METHODS: Nebivolol HCl loaded transferosomes were prepared by thin film hydration method. Eight formulations were prepared based on the two independent variables, type of surfactant (Tween 80 and Span 80) and Phospholipid: Edge activator ratio and were evaluated for their vesicle size, PDI, and entrapment efficiency. The optimized formulations were incorporated into transdermal patches, which were evaluated for physicochemical properties, in-vitro and ex-vivo permeation, skin irritancy, and stability studies. RESULTS: The vesicle size of the transferosomes ranged from 49nm to 93nm, and EE% varied from 39% to 79%. Vesicles formed with Span 80 as an edge activator showed smaller vesicle size and greater EE% as compared to Tween 80. Based on the results, TW4 and SP4 were selected as the optimized formulations for further incorporation into the transdermal patches. In-vitro and ex-vivo permeation studies showed permeation in the order F2 > F3 > F1, indicating that transferosomal formulations showed superior permeation of the drug compared to plain Nebivolol HCl patches. Span 80 transferosomes showed a slightly better permeation than Tween 80. Stability studies showed that transferosomes and the transdermal patches demonstrated good stability under proper storage conditions. CONCLUSION: The study concluded that transferosomal patches of Nebivolol HCl could be used as a potential approach with effective transdermal delivery for the management of hypertension.

5.
Turk J Pharm Sci ; 18(5): 541-549, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34708645

ABSTRACT

Objectives: Lovastatin is an antilipidemic drug that belongs to the class of statins that has poor oral bioavailability due to its low solubility and variable dissolution rate. The main aim of this study was to enhance the solubility and dissolution rate of the drug and understand its oral bioavailability. Materials and Methods: Lovastatin nanosuspension was formulated using a solventanti-solvent method using a probe sonication technique. A nanosuspension was prepared, using hydroxypropyl methylcellulose (HPMC) K15M and pluronic F68 as stabilizers. The formulated nanosuspensions were characterized for particle size, polydispersity index (PDI) zeta potential, surface morphology, and in vitro release rate. Further, an in vivo bioavailability study and stability studies were also performed. Results: Optimized formulation showed a particle size of 127±0.01 nm, a PDI of 0.492±0.001, and a zeta potential of -37.9 mV, which indicates good stability. Morphological study showed that the particles were in the nano range. The drug content was found to be in the range of 73-87%. In vitro release revealed much faster release of the drug in one hour compared to the pure drug and its marketed formulation. In vivo bioavailability study was carried out in Wistar rats, which showed improvement in bioavailability by approximately 2.5 folds compared with the marketed formulation. Stability studies indicated that the optimized formulation F2 was more stable at 4°C±2°C. Conclusion: The prepared lovastatin nanosuspension showed improvement in solubility, dissolution rate, and oral bioavailability compared to the pure drug and its marketed formulation. Hence, lovastatin nanosuspension may be a potentially valuable tool for improving the oral bioavailability of lovastatin.

6.
Int J Pharm Investig ; 1(4): 227-33, 2011 Oct.
Article in English | MEDLINE | ID: mdl-23071948

ABSTRACT

BACKGROUND: Hypertension shows circadian rhythm that there is a rise in pressure from the time of waking or before (about 4 to 8 a.m.), in most people. Conventional drug delivery system of captopril is inappropriate for the delivery of drug, as they cannot be administered just before the symptoms are worsened, because during this time the patients are asleep, bedtime dosing of captopril will not provide a therapeutic plasma drug concentration at the early hours of morning because of poor pharmacokinetic profile and shorter half-life of 1.9 hours. Thus, this study attempts to design and evaluate a chronomodulated pulsatile drug delivery system of captopril which was aimed to release the drug after a lag time of 6 hours. MATERIALS AND METHODS: Present delivery system was prepared by rupturable coating method. The core containing captopril as a bioactive compound were prepared by direct compression method and then coated sequentially with an inner swelling layer containing hydrocolloid HPMC E5 and an outer rupturable layer consisted of Eudragit RL/RS (1 : 1). Total 12 formulations with different levels of inner swelling layer and outer polymeric layer were prepared and subjected to various processing and formulative parameters like the effect of core composition, level of swelling layer, and rupturable coating on lag time was investigated. In vitro drug release and rupture tests were performed using United States Pharmacopoeia paddle method at 50 rpm in 0.1N HCl and phosphate buffer of pH 6.8. RESULTS: The results showed that as the amount of inner swelling layer increases, the lag time decreases and as the Eudragit coating level increases, the lag time increases and percent water uptake of time-dependent pulsatile release system decreases. The presence of an osmotic agent and effervescent agent helped in shortening of lag time. CONCLUSION: The system was found to be satisfactory in terms of release of the drug after the lag time of 6 hours.

SELECTION OF CITATIONS
SEARCH DETAIL
...