Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 7(52): 86594-86607, 2016 Dec 27.
Article in English | MEDLINE | ID: mdl-27863409

ABSTRACT

Osteosarcoma is the most frequently occurring bone cancer in children and adolescents. Unfortunately, treatment failures are common. Eribulin is a synthetic microtubule inhibitor that has demonstrated activity in preclinical osteosarcoma models. The effects of eribulin were evaluated in two human osteosarcoma cell lines as well as in eribulin-sensitive and -resistant osteosarcoma xenograft tumors of the Pediatric Preclinical Testing Program (PPTP) by characterizing cell viability, microtubule destabilization, mitotic arrest and mechanism of cell death. Eribulin demonstrated cytotoxic activity in vitro, through promotion of microtubule dynamic instability, arrest of cells in the G2/M phase, mitotic catastrophe and cell death. The microtubule-destabilizing protein stathmin-1 (STMN1) was coimmunoprecipitated with the cyclin-dependent kinase inhibitor p27 indicating that these cytoplasmic complexes can protect cells from the microtubule destabilizing effect of eribulin. Increased tumoral expression of P-glycoprotein (P-gp) and TUBB3 were also associated with lower drug sensitivity. In summary, eribulin successfully blocked cells in G2/M phase but interfered with mitochondria activity to inhibit proteins involved in apoptosis. Understanding the complex and inter-related mechanisms involved in the overall drug response to eribulin may help in the design of therapeutic strategies that enhance drug activity and improve benefits of eribulin in pediatric patients with osteosarcoma.


Subject(s)
Bone Neoplasms/drug therapy , Furans/therapeutic use , Ketones/therapeutic use , Osteosarcoma/drug therapy , Tubulin Modulators/therapeutic use , Animals , Apoptosis/drug effects , Bone Neoplasms/pathology , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Drug Resistance, Neoplasm , Humans , Mice , Osteosarcoma/pathology , Stathmin/metabolism , Tubulin/metabolism , Xenograft Model Antitumor Assays
2.
J Cell Sci ; 128(23): 4366-79, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26483386

ABSTRACT

In epithelial cancers, carcinoma cells coexist with normal cells. Although it is known that the tumor microenvironment (TME) plays a pivotal role in cancer progression, it is not completely understood how the tumor influences adjacent normal epithelial cells. In this study, a three-dimensional co-culture system comprising non-transformed epithelial cells (MDCK) and transformed carcinoma cells (MSV-MDCK) was used to demonstrate that carcinoma cells sequentially induce preneoplastic lumen filling and epithelial-mesenchymal transition (EMT) in epithelial cysts. MMP-9 secreted by carcinoma cells cleaves cellular E-cadherin (encoded by CDH1) from epithelial cells to generate soluble E-cadherin (sE-cad), a pro-oncogenic protein. We show that sE-cad induces EGFR activation, resulting in lumen filling in MDCK cysts. Long-term sE-cad treatment induced EMT. sE-cad caused lumen filling by induction of the ERK signaling pathway and triggered EMT through the sustained activation of the AKT pathway. Although it is known that sE-cad induces MMP-9 release and consequent EGFR activation in tumor cells, our results, for the first time, demonstrate that carcinoma cells can induce sE-cad shedding in adjacent epithelial cells, which leads to EGFR activation and the eventual transdifferentiation of the normal epithelial cells.


Subject(s)
Cadherins/metabolism , Carcinoma/metabolism , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , ErbB Receptors/metabolism , Animals , Cadherins/genetics , Carcinoma/genetics , Carcinoma/pathology , Dogs , Epithelial Cells/pathology , ErbB Receptors/genetics , Madin Darby Canine Kidney Cells , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism
3.
PLoS One ; 9(7): e102041, 2014.
Article in English | MEDLINE | ID: mdl-25025131

ABSTRACT

The Wilms' tumor transcription factor (WT1) was originally classified as a tumor suppressor, but it is now known to also be associated with cancer progression and poor prognosis in several malignancies. WT1 plays an essential role in orchestrating a developmental process known as mesenchymal-to-epithelial transition (MET) during kidney development, but also induces the reverse process, epithelial-to-mesenchymal transition (EMT) during heart development. WT1 is not expressed in the adult kidney, but shows elevated expression in clear cell renal cell carcinoma (ccRCC). However, the role of WT1 in this disease has not been characterized. In this study, we demonstrate that WT1 is upregulated in ccRCC cells that are deficient in the expression of the von Hippel-Lindau tumor suppressor protein (VHL). We found that WT1 transcriptionally activated Snail, a master transcriptional repressor that is known to induce EMT. Although Snail represses E-cadherin and induces mesenchymal characteristics, we found partial maintenance of E-cadherin and associated epithelial characteristics in kidney cells and ccRCC cells that express WT1, since WT1 upregulates E-cadherin expression and competes with Snail repression. These findings support a novel paradigm in which WT1 induces an epithelial-mesenchymal hybrid transition (EMHT), characterized by Snail up-regulation with E-cadherin maintenance, a tumor cell differentiation state in which cancer cells keep both EMT and MET characteristics which may promote tumor cell plasticity and tumor progression.


Subject(s)
Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Epithelial-Mesenchymal Transition/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Wnt Proteins/genetics , Animals , Cadherins/genetics , Cadherins/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Snail Family Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , WT1 Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...