Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Molecules ; 26(14)2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34299526

ABSTRACT

Peptide and protein drug molecules fold into higher order structures (HOS) in formulation and these folded structures are often critical for drug efficacy and safety. Generic or biosimilar drug products (DPs) need to show similar HOS to the reference product. The solution NMR spectroscopy is a non-invasive, chemically and structurally specific analytical method that is ideal for characterizing protein therapeutics in formulation. However, only limited NMR studies have been performed directly on marketed DPs and questions remain on how to quantitively define similarity. Here, NMR spectra were collected on marketed peptide and protein DPs, including calcitonin-salmon, liraglutide, teriparatide, exenatide, insulin glargine and rituximab. The 1D 1H spectral pattern readily revealed protein HOS heterogeneity, exchange and oligomerization in the different formulations. Principal component analysis (PCA) applied to two rituximab DPs showed consistent results with the previously demonstrated similarity metrics of Mahalanobis distance (DM) of 3.3. The 2D 1H-13C HSQC spectral comparison of insulin glargine DPs provided similarity metrics for chemical shift difference (Δδ) and methyl peak profile, i.e., 4 ppb for 1H, 15 ppb for 13C and 98% peaks with equivalent peak height. Finally, 2D 1H-15N sofast HMQC was demonstrated as a sensitive method for comparison of small protein HOS. The application of NMR procedures and chemometric analysis on therapeutic proteins offer quantitative similarity assessments of DPs with practically achievable similarity metrics.


Subject(s)
Peptides/chemistry , Pharmaceutical Preparations/chemistry , Proteins/chemistry , Calcitonin/chemistry , Exenatide/chemistry , Insulin Glargine/chemistry , Liraglutide/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Conformation , Rituximab/chemistry , Teriparatide/chemistry
2.
AAPS PharmSciTech ; 22(2): 73, 2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33586081

ABSTRACT

Degarelix is a gonadotropin-releasing hormone (GnRH) receptor antagonist. Upon contact with physiological fluid, degarelix undergoes quick gelation and forms a depot at the site of injection providing sustained release. The molecular gelling kinetics is a critical physiochemical quality attribute of degarelix products that may impact drug delivery. However, high-resolution and drug substance (DS)-specific analytical methods for characterizing gelling kinetics of degarelix are still lacking. Accordingly, the current study focused on developing NMR-based methods to characterize in vitro initial aggregation of degarelix in Firmagon® drug product (DP). The high-precision real-time NMR method was demonstrated to quickly differentiate lot to lot differences in degarelix aggregation kinetics, and to reveal the effects of degarelix concentration, pH, salt, and temperature on the kinetics. The results could be useful for quality assurance of degarelix products and facilitate complex generic drug development. The real-time NMR method developed here could also be adopted to other complex DPs that have varied aggregation and release properties.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Oligopeptides/chemistry , Drug Development , Humans , Kinetics , Male , Prostatic Neoplasms/drug therapy
3.
Pharm Res ; 37(12): 238, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33155155

ABSTRACT

PURPOSE: Analytical methods suitable for intact drug products are often necessary to evaluate the equivalence in physicochemical properties between two drug products (DP) containing the same drug substance (DS), e.g., an innovator biologic drug and its proposed biosimilar. Analytical Ultracentrifugation (AUC) is a biophysics technique applied to the analysis of size and shape of biomolecules. However, the application of AUC to formulated monoclonal antibody (mAb) DP at high concentration has not been reported. METHODS: A sedimentation velocity (SV) AUC procedure with a short-pathlength centerpiece was applied to two marketed rituximab DPs, Rituxan® (US) and Reditux® (India), without any buffer exchange or dilution. Detailed precision analysis was performed. RESULTS: Highly reproducible sedimentation coefficient values (S) and peak areas were obtained for the dominant (> 84%) monomeric rituximab peak. The minor mAb fragment peaks had large variation in both S values and peak areas (3-12%). The identification of oligomer peaks was only reproducible once the abundance was higher than 2%. CONCLUSIONS: SV-AUC provides an orthogonal characterization tool for protein size distribution, composition and assay, which could be informative for biosimilar drug developers who mostly only have access to formulated mAb. However, AUC needs thorough validation on its accuracy, precision and sensitivity.


Subject(s)
Biosimilar Pharmaceuticals/analysis , Rituximab/analysis , Biosimilar Pharmaceuticals/chemistry , Chemistry, Pharmaceutical/methods , Chromatography, Gel , Particle Size , Rituximab/chemistry , Ultracentrifugation
4.
AAPS PharmSciTech ; 21(5): 136, 2020 May 17.
Article in English | MEDLINE | ID: mdl-32419122

ABSTRACT

The paclitaxel protein-bound particles for injectable suspension (marketed under the brand name Abraxane®) contains nanosized complexes of paclitaxel and albumin. The molecular interaction between paclitaxel and albumin within the higher-order nanostructure is analytically challenging to assess, as is any correlation of differences to differences in therapeutic effect. However, because the higher-order nanostructures may affect the paclitaxel release, a suitable in vitro assay to detect potential differences in paclitaxel release between comparator lots and products is desirable. Herein, solution NMR spectroscopy with a T2-filtering technique was developed to detect paclitaxel signal while suppressing albumin signals to follow the released paclitaxel in the NMR tube upon dilution. The non-invasive nature of NMR allows for precise measurement of a full range of dilution-induced drug release percentage from 14 to 92% without any sample extraction. The critical concentration of the drug product (DP) at 50% of release was 0.63 ± 0.04 mg/mL in PBS buffer. In addition, 2D diffusion ordered NMR spectroscopy (DOSY) results revealed that the released paclitaxel experiencing slightly slowed diffusion rates than free paclitaxel, which was attributed to paclitaxel in equilibrium with albumin-bound states. Collectively, the dilution-based NMR method offered an analytical approach to investigate physicochemical attributes of complex injectable products with minimal needed sample preparation and perturbation to nanoparticle formulation.


Subject(s)
Albumins/chemistry , Drug Compounding/methods , Magnetic Resonance Spectroscopy/methods , Nanoparticles/chemistry , Paclitaxel/administration & dosage , Diffusion , Paclitaxel/chemistry , Particle Size , Reference Standards , Solubility , Suspensions
5.
Sci Rep ; 10(1): 2476, 2020 02 12.
Article in English | MEDLINE | ID: mdl-32051479

ABSTRACT

PEGylated recombinant human granulocyte colony stimulating factor (pegfilgrastim) is used clinically to accelerate immune reconstitution following chemotherapy and is being pursued for biosimilar development. One challenge to overcome in pegfilgrastim biosimilar development is establishing pharmacokinetic (PK) similarity, which is partly due to the degree of PK variability. We herein report that commercially available G-CSF and PEG ELISA detection kits have different capacities to detect pegfilgrastim aggregates that rapidly form in vitro in physiological conditions. These aggregates can be observed using SDS-PAGE, size-exclusion chromatography, dynamic light scattering, and real-time NMR analysis and are associated with decreased bioactivity as reflected by reduced drug-induced cellular proliferation and STAT3 phosphorylation. Furthermore, individual variability in the stability and detectability of pegfilgrastim in human sera is also observed. Pegfilgrastim levels display marked subject variability in sera from healthy donors incubated at 37 °C. The stability patterns of pegfilgrastim closely match the stability patterns of filgrastim, consistent with a key role for pegfilgrastim's G-CSF moiety in driving formation of inactive aggregates. Taken together, our results indicate that individual variability and ELISA specificity for inactive aggregates are key factors to consider when designing and interpreting studies involving the measurement of serum pegfilgrastim concentrations.


Subject(s)
Biological Variation, Individual , Filgrastim/pharmacokinetics , Polyethylene Glycols/pharmacokinetics , Animals , Cell Line, Tumor , Cell Proliferation , Enzyme-Linked Immunosorbent Assay/standards , Humans , Mice , STAT3 Transcription Factor/metabolism
6.
J Pharm Sci ; 109(4): 1519-1528, 2020 04.
Article in English | MEDLINE | ID: mdl-31927041

ABSTRACT

Protein or peptide higher order structure (HOS) is a quality attribute that could affect therapeutic efficacy and safety. Where appropriate, the HOS similarity between a proposed follow-on product and the reference listed drug should be demonstrated during regulatory assessment. Establishing quantitative HOS similarity for 2 drug substances, manufactured by different processes, has been challenging. Herein, HOS differences among U.S. marketed insulin drug products (DPs) were quantified using nuclear magnetic resonance spectra and principal component analysis (PCA). Then, the unitless Mahalanobis distance (DM) in PCA space was calculated between insulin analog reference listed drugs and their recently approved follow-on products, and all DM values were 3.29 or less. By contrast, a larger DM value of 20.5 was obtained between the 2 insulin human DPs independently approved. However, upon mass-balanced and reversible dialysis of the 2 insulin human DPs against the same buffers, the DM value was reduced to 1.19 or less. Thus, the observed range of nuclear magnetic resonance-PCA-derived DM values can be used as a robust and sensitive measure of HOS similarity. Overall, the DM values of 3.3 for DP and 1.2 for drug substances using insulin therapeutics represented realistic and achievable similarity metrics for developing generic or biosimilar drugs, quality assurance, or control.


Subject(s)
Insulin , Renal Dialysis , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Proteins
7.
J Pharm Sci ; 108(2): 815-820, 2019 02.
Article in English | MEDLINE | ID: mdl-30291851

ABSTRACT

In a typical oil-in-water emulsion drug product, oil droplets with varied sizes are dispersed in a water phase and stabilized by surfactant molecules. The size and polydispersity of oil droplets are critical quality attributes of the emulsion drug product that can potentially affect drug bioavailability. More critically, to ensure accuracy in characterization of the finished drug product, analytical methods should introduce minimal physical perturbation (e.g., temperature variation or dilution) before the analysis. The classical methods of dynamic light scattering or electron microscopy can be used but they generally require sample dilution or harsh preparation conditions, respectively. By contrast, the size distribution of emulsion formulations can be assessed with a simple and noninvasive solution nuclear magnetic resonance method, namely, two-dimensional Diffusion Ordered SpectroscopY. The two-dimensional Diffusion Ordered SpectroscopY method probed signal decay of methyl resonances from oil and sorbate molecules and was applied to 3 types of U.S.-marketed emulsion drug products, that is, difluprednate, cyclosporine, and propofol, yielding measured droplet sizes of 40-280 nm in diameter. The high precision of ±6 nm of the new nuclear magnetic resonance method allows analytical differentiation of lot-to-lot and brand-to-brand droplet size differences in emulsion drug products, critical for drug-quality development, control, and surveillance.


Subject(s)
Emulsions/chemistry , Oils/chemistry , Pharmaceutical Preparations/chemistry , Surface-Active Agents/chemistry , Water/chemistry , Antifungal Agents/chemistry , Cyclosporine/chemistry , Diffusion , Fluprednisolone/analogs & derivatives , Fluprednisolone/chemistry , Glucocorticoids/chemistry , Hypnotics and Sedatives/chemistry , Magnetic Resonance Spectroscopy , Particle Size , Propofol/chemistry
8.
Int J Pharm ; 550(1-2): 229-239, 2018 Oct 25.
Article in English | MEDLINE | ID: mdl-30125649

ABSTRACT

Measurement of particle size and size distribution of complex drug products exhibiting complex rheological behaviors can be challenging as these properties may be beyond the theoretical assumptions of the measurement technique. Herein cyclosporine (CsA) ophthalmic emulsion was selected as a model complex system, and an in-depth assessment of particle size was performed using five fundamentally different particle sizing techniques, including dynamic light scattering (DLS), laser diffraction (LD), nanoparticle tracking analysis (NTA), cryogenic transmission electron microscopy (Cryo-TEM) and 2-dimensional diffusion ordered spectroscopy nuclear magnetic resonance (2D DOSY-NMR). The effect of various viscosity modifying and stabilizing excipients in the emulsions was assessed using four types of CsA formulations, i.e., 1) no viscosity modifying excipients, 2) carbomer copolymer type A (CCA), 3) Carbopol 1342, or 4) hydroxypropyl methyl cellulose (HMPC). In general, the variability of reported particle size increased, and is not as accurate, for emulsions dispersed in a non-Newtonian fluid and at higher emulsion concentrations. This effect was reduced in part by diluting the samples to lower volume fraction and a more Newtonian regime. To address the concern that sample dilution prior to measurement may induce physical instability in the emulsions, NTA was used to monitor average size at dilutions of up to 1:50,000. The size was found to remain constant and independent of the presence or type of stabilizer used. Cryo-TEM further confirmed that dilution did not alter particle size or morphology. Of the five evaluated techniques, Cryo-TEM and 2D DOSY NMR did not require dilution for measurement. The overestimate in DLS size measurements for certain CsA formulations was attributed to complex dispersant rheological behavior, particle-particle interactions, multiple light scattering events, and/or scattering interference from the polymers, which can be overcome by either testing under dilutions or by selecting one of the techniques less impacted by the interference of polymer.


Subject(s)
Cyclosporine/chemistry , Ophthalmic Solutions/chemistry , Emulsions , Microscopy, Electron, Transmission , Particle Size , Rheology
9.
Anal Chem ; 90(18): 11016-11024, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30102512

ABSTRACT

Glycosylation of monoclonal antibodies (mAbs) is a critical quality attribute that can impact mAb drug efficacy and safety. The mAb glycans are inherently heterogeneous in chemical structure and composition of monosaccharides. The established fluorescence or mass-spectrometry (MS) detection methods for glycosylation evaluation may require multiple steps of glycan cleavage or extensive digestion of the mAb, chemical labeling of the glycans, column separation and report the chemical identity of glycans indirectly through retention time and molecular weight values. In demonstrating chemical structure similarity and comparability among mAb drugs, orthogonal analytical methods for measuring glycan chemistry are needed to ensure the quality of drug products. Here, a "middle-down" NMR method is developed as a proof-of-concept approach to measure the domain-specific glycosylation of marketed mAb drugs without cleavage of the glycan moieties. Complete glycan 1H/13C chemical shift assignments were obtained at 13C natural abundance from commercial standard glycans that allowed unambiguous determination of the chemical structure, glycosidic linkage position, and anomeric configuration of each monosaccharide in the major N-glycan scaffolds found in mAb molecules. The analysis of glycan anomeric peaks in two-dimensional (2D) 1H-13C NMR spectra yielded metrics for clinically important mAb quality attributes (i.e., galactosylation (Gal%) and fucosylation (Fuc%)), consistent with literature results using a standard glycan-mapping method. Therefore, the middle-down NMR method provided a facile orthogonal measurement for mAb glycosylation characterization with improved chemical information content on glycan structure determination and quantification, compared to standard approaches.


Subject(s)
Antibodies, Monoclonal/chemistry , Magnetic Resonance Spectroscopy/methods , Polysaccharides/analysis , Carbohydrate Conformation , Glycosylation , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fc Fragments/chemistry , Monosaccharides/analysis
10.
AAPS PharmSciTech ; 19(4): 1647-1651, 2018 May.
Article in English | MEDLINE | ID: mdl-29500761

ABSTRACT

Generic drug products are expected to have the same active pharmaceutical ingredient (API) (Q1) with the same content (Q2) and microstructure arrangement (Q3) as the innovator product. In complex oil-in-water emulsion drugs, the hydrophobic API is mainly formulated in oil droplets stabilized by surfactant and micelles composed of extra surfactant molecules. The API phase partition in oil and water (mainly micelle) is a critical quality attribute (CQA) of emulsion product in demonstrating physicochemical equivalence using difluprednate (DFPN) emulsion product Durezol® as a model, we developed a novel low-field benchtop NMR method to demonstrate its applicability in measuring DFPN phase partition for ophthalmic oil-in-water emulsion products. Low-field 19F spectra were collected for DFPN in formulation, in water phase and oil phase after separation from ultra-centrifugation. The NMR data showed the mass balance of DFPN before and after phase separation. The average water phase content of different Durezol® lots was 32 ± 3% with 1% variation from method reproducibility test. The partition results were 52 ± 2% for the in-house control products prepared in Q1/Q2 equivalence to Durezol® but by a different process. The significant difference in DFPN-phase partition between Durezol® and the in-house formulation demonstrated manufacture difference readily changed the API partition. The newly developed ultra-centrifugation and 19F NMR by benchtop instrument is a simple, robust, and sensitive analytical method for ophthalmic emulsion drug product development and control.


Subject(s)
Fluorine-19 Magnetic Resonance Imaging/methods , Fluprednisolone/analogs & derivatives , Magnetic Resonance Spectroscopy/methods , Ocular Absorption , Ultracentrifugation/methods , Water/analysis , Emulsions , Fluprednisolone/analysis , Fluprednisolone/chemistry , Micelles , Particle Size , Reproducibility of Results , Surface-Active Agents/analysis , Surface-Active Agents/chemistry , Water/chemistry
11.
AAPS PharmSciTech ; 19(3): 1011-1019, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29110294

ABSTRACT

NMR spectroscopy is an emerging analytical tool for measuring complex drug product qualities, e.g., protein higher order structure (HOS) or heparin chemical composition. Most drug NMR spectra have been visually analyzed; however, NMR spectra are inherently quantitative and multivariate and thus suitable for chemometric analysis. Therefore, quantitative measurements derived from chemometric comparisons between spectra could be a key step in establishing acceptance criteria for a new generic drug or a new batch after manufacture change. To measure the capability of chemometric methods to differentiate comparator NMR spectra, we calculated inter-spectra difference metrics on 1D/2D spectra of two insulin drugs, Humulin R® and Novolin R®, from different manufacturers. Both insulin drugs have an identical drug substance but differ in formulation. Chemometric methods (i.e., principal component analysis (PCA), 3-way Tucker3 or graph invariant (GI)) were performed to calculate Mahalanobis distance (D M) between the two brands (inter-brand) and distance ratio (D R) among the different lots (intra-brand). The PCA on 1D inter-brand spectral comparison yielded a D M value of 213. In comparing 2D spectra, the Tucker3 analysis yielded the highest differentiability value (D M = 305) in the comparisons made followed by PCA (D M = 255) then the GI method (D M = 40). In conclusion, drug quality comparisons among different lots might benefit from PCA on 1D spectra for rapidly comparing many samples, while higher resolution but more time-consuming 2D-NMR-data-based comparisons using Tucker3 analysis or PCA provide a greater level of assurance for drug structural similarity evaluation between drug brands.


Subject(s)
Insulin/chemistry , Magnetic Resonance Spectroscopy/methods , Insulin, Regular, Human/chemistry , Principal Component Analysis , Proteins
12.
AAPS J ; 19(6): 1760-1766, 2017 11.
Article in English | MEDLINE | ID: mdl-28791599

ABSTRACT

Particle size distribution, a measurable physicochemical quantity, is a critical quality attribute of drug products that needs to be controlled in drug manufacturing. The non-invasive methods of dynamic light scattering (DLS) and Diffusion Ordered SpectroscopY (DOSY) NMR can be used to measure diffusion coefficient and derive the corresponding hydrodynamic radius. However, little is known about their use and sensitivity as analytical tools for particle size measurement of formulated protein therapeutics. Here, DLS and DOSY-NMR methods are shown to be orthogonal and yield identical diffusion coefficient results for a homogenous monomeric protein standard, ribonuclease A. However, different diffusion coefficients were observed for five insulin drug products measured using the two methods. DOSY-NMR yielded an averaged diffusion coefficient among fast exchanging insulin oligomers, ranging between dimer and hexamer in size. By contrast, DLS showed several distinct species, including dimer, hexamer, dodecamer and other aggregates. The heterogeneity or polydisperse nature of insulin oligomers in formulation caused DOSY-NMR and DLS results to differ from each other. DLS measurements provided more quality attributes and higher sensitivity to larger aggregates than DOSY-NMR. Nevertheless, each method was sensitive to a different range of particle sizes and complemented each other. The application of both methods increases the assurance of complex drug quality in this similarity comparison.


Subject(s)
Dynamic Light Scattering/methods , Insulin/chemistry , Magnetic Resonance Spectroscopy/methods , Diffusion , Particle Size , Protein Multimerization
13.
J Diabetes Res ; 2015: 946037, 2015.
Article in English | MEDLINE | ID: mdl-26576438

ABSTRACT

To test the hypothesis that electrostatic repulsion is an important force opposing amyloid fibril assembly, we designed peptides that substitute strings of positively or negatively charged residues into the sequence of the amyloidogenic hormone amylin, which contributes to type 2 diabetes pathology. Arg-1 and Arg-2 substitute four positively charged arginines for segments that in structural models of amylin fibrils form the end of strand ß1 and the beginning of strand ß2, respectively. Mem-T substitutes negatively charged aspartates for the peptide segment with the largest avidity for membranes. All three charge-loaded peptides fibrillize poorly on their own and inhibit fibril elongation of WT-amylin at physiological ionic strength. The inhibition of WT-amylin fibril elongation rates is salt-dependent indicating that the analogs act through electrostatic interactions. Arg-1 protects against WT-amylin cytotoxicity towards a MIN6 mouse model of pancreatic ß-cells, and Arg-2 protects at higher concentrations, whereas Mem-T has no effect. The most effective variant, Arg-1, inhibits WT-amylin fibril elongation rates with an IC50 of ~1 µM and cytotoxicity with an IC50 of ~50 µM, comparable to other types of fibrillization inhibitors reported in the literature. Taken together, these results suggest that electrostatic interactions can be exploited to develop new types of inhibitors of amyloid fibrillization and toxicity.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Insulin-Secreting Cells/metabolism , Islet Amyloid Polypeptide/metabolism , Animals , Mice , Peptide Fragments/metabolism , Static Electricity
14.
Biochemistry ; 53(2): 300-10, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24377660

ABSTRACT

In type 2 diabetics, the hormone amylin misfolds into amyloid plaques implicated in the destruction of the pancreatic ß-cells that make insulin and amylin. The aggregative misfolding of amylin is pH-dependent, and exposure of the hormone to acidic and basic environments could be physiologically important. Amylin has two ionizable residues between pH 3 and 9: the α-amino group and His18. Our approach to measuring the pKa values for these sites has been to look at the pH dependence of fibrillization in amylin variants that have only one of the two groups. The α-amino group at the unstructured N-terminus of amylin has a pKa near 8.0, similar to the value in random coil models. By contrast, His18, which is involved in the intermolecular ß-sheet structure of the fibrils, has a pKa that is lowered to 5.0 in the fibrils compared to the random coil value of 6.5. The lowered pKa of His18 is due to the hydrophobic environment of the residue, and electrostatic repulsion between positively charged His18 residues on neighboring amylin molecules in the fibril. His18 acts as an electrostatic switch inhibiting fibrillization in its charged state. The presence of a charged side chain at position 18 also affects fibril morphology and lowers amylin cytotoxicity toward a MIN6 mouse model of pancreatic ß-cells. In addition to the two expected pKa values, we detected an apparent pKa of ~4.0 for the amylin-derived peptide NAc-SNNFGAILSS-NH2, which has no titratable groups. This pKa is due to the pH-induced ionization of the dye thioflavin T. By using alternative methods to follow fibrillization such as the dye Nile Red or turbidimetry, we were able to distinguish between the titration of the dye and groups on the peptide. Large differences in reaction kinetics were observed between the different methods at acidic pH, because of charges on the ThT dye, which hinder fibril formation much like the charges on the protein.


Subject(s)
Islet Amyloid Polypeptide/chemistry , Islet Amyloid Polypeptide/metabolism , Animals , Benzothiazoles , Cell Survival/drug effects , Fluorescent Dyes/chemistry , Humans , Hydrogen-Ion Concentration , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Islet Amyloid Polypeptide/pharmacology , Kinetics , Mice , Models, Animal , Models, Molecular , Molecular Structure , Protein Binding/drug effects , Structure-Activity Relationship , Thiazoles/chemistry , Tumor Cells, Cultured
15.
J Biol Chem ; 286(26): 22894-904, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21555785

ABSTRACT

We characterized the interaction of amylin with heparin fragments of defined length, which model the glycosaminoglycan chains associated with amyloid deposits found in type 2 diabetes. Binding of heparin fragments to the positively charged N-terminal half of monomeric amylin depends on the concentration of negatively charged saccharides but is independent of oligosaccharide length. By contrast, amylin fibrillogenesis has a sigmoidal dependence on heparin fragment length, with an enhancement observed for oligosaccharides longer than four monomers and a leveling off of effects beyond 12 monomers. The length dependence suggests that the negatively charged helical structure of heparin electrostatically complements the positively charged surface of the fibrillar amylin cross-ß structure. Fluorescence resonance energy transfer and total internal reflection fluorescence microscopy experiments indicate that heparin associates with amylin fibrils, rather than enhancing fibrillogenesis catalytically. Short heparin fragments containing two- or eight-saccharide monomers protect against amylin cytotoxicity toward a MIN6 mouse cell model of pancreatic ß-cells.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Heparin/metabolism , Insulin-Secreting Cells/metabolism , Islet Amyloid Polypeptide/metabolism , Models, Biological , Oligosaccharides/metabolism , Animals , Cell Line , Heparin/chemistry , Humans , Insulin-Secreting Cells/chemistry , Islet Amyloid Polypeptide/chemistry , Mice , Oligosaccharides/chemistry , Protein Structure, Quaternary , Protein Structure, Secondary
16.
Biochemistry ; 50(14): 2808-19, 2011 Apr 12.
Article in English | MEDLINE | ID: mdl-21391619

ABSTRACT

Total internal reflection fluorescence microscopy has been used to visualize the fibrillization of amylin, a hormone which in aggregated forms plays a role in type 2 diabetes pathology. Data were obtained at acidic pH where fibrillization is hindered by the charging of histidine 18 and at slightly basic pH where the loss of charge on the histidine promotes aggregation. The experiments show three types of aggregate growth processes. In the earliest steps globular seeds are formed with some expanding radially during the course of the reaction. The dimensions of the globular seeds as well as their staining with the amyloid-specific dye thioflavin T indicate that they are plaques of short fibrils. The next species observed are fibrils that invariably grow from large globular seeds or smaller punctate granules. Fibril elongation appears to be unidirectional, although in some cases multiple fibrils radiate from a single seed or granule. After fibrils are formed, some show an increase in fluorescence intensity that we attribute to the growth of new fibrils alongside those previously formed. All three aggregation processes are suggestive of secondary (heterogeneous) nucleation mechanisms in which nucleation occurs on preformed fibrils. Consistently, electron micrographs show changes in fibril morphology well after fibrils are first formed, and the growth processes observed by fluorescence microscopy occur after the corresponding solution reactions have reached an initial apparent plateau. Taken together, the results highlight the importance of secondary nucleation in the fibrillization of amylin, as this could provide a pathway to continue fibril growth once an initial population of fibrils is established.


Subject(s)
Islet Amyloid Polypeptide/chemistry , Islet Amyloid Polypeptide/ultrastructure , Microscopy, Fluorescence/methods , Animals , Diabetes Mellitus, Type 2/metabolism , Disulfides/chemistry , Humans , Hydrogen-Ion Concentration , Kinetics , Microscopy, Electron, Transmission , Solutions/chemistry
17.
Protein Sci ; 20(2): 256-69, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21280118

ABSTRACT

The intrinsically unfolded protein α-synuclein has an N-terminal domain with seven imperfect KTKEGV sequence repeats and a C-terminal domain with a large proportion of acidic residues. We characterized pK(a) values for all 26 sites in the protein that ionize below pH 7 using 2D (1) H-(15) N HSQC and 3D C(CO)NH NMR experiments. The N-terminal domain shows systematically lowered pK(a) values, suggesting weak electrostatic interactions between acidic and basic residues in the KTKEGV repeats. By contrast, the C-terminal domain shows elevated pK(a) values due to electrostatic repulsion between like charges. The effects are smaller but persist at physiological salt concentrations. For α-synuclein in the membrane-like environment of sodium dodecylsulfate (SDS) micelles, we characterized the pK(a) of His50, a residue of particular interest since it is flanked within one turn of the α-helix structure by the Parkinson's disease-linked mutants E46K and A53T. The pK(a) of His50 is raised by 1.4 pH units in the micelle-bound state. Titrations of His50 in the micelle-bound states of the E46K and A53T mutants show that the pK(a) shift is primarily due to interactions between the histidine and the sulfate groups of SDS, with electrostatic interactions between His50 and Glu46 playing a much smaller role. Our results indicate that the pK(a) values of uncomplexed α-synuclein differ significantly from random coil model peptides even though the protein is intrinsically unfolded. Due to the long-range nature of electrostatic interactions, charged residues in the α-synuclein sequence may help nucleate the folding of the protein into an α-helical structure and confer protection from misfolding.


Subject(s)
alpha-Synuclein/chemistry , Amino Acid Sequence , Amyloid/chemistry , Amyloid/metabolism , Humans , Hydrogen-Ion Concentration , Micelles , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Protein Folding , Sodium Chloride/chemistry , Static Electricity , alpha-Synuclein/metabolism
18.
J Biol Chem ; 284(18): 11982-91, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19244249

ABSTRACT

Amylin is an endocrine hormone that regulates metabolism. In patients afflicted with type 2 diabetes, amylin is found in fibrillar deposits in the pancreas. Membranes are thought to facilitate the aggregation of amylin, and membrane-bound oligomers may be responsible for the islet beta-cell toxicity that develops during type 2 diabetes. To better understand the structural basis for the interactions between amylin and membranes, we determined the NMR structure of human amylin bound to SDS micelles. The first four residues in the structure are constrained to form a hairpin loop by the single disulfide bond in amylin. The last nine residues near the C terminus are unfolded. The core of the structure is an alpha-helix that runs from about residues 5-28. A distortion or kink near residues 18-22 introduces pliancy in the angle between the N- and C-terminal segments of the alpha-helix. Mobility, as determined by (15)N relaxation experiments, increases from the N to the C terminus and is strongly correlated with the accessibility of the polypeptide to spin probes in the solution phase. The spin probe data suggest that the segment between residues 5 and 17 is positioned within the hydrophobic lipid environment, whereas the amyloidogenic segment between residues 20 and 29 is at the interface between the lipid and solvent. This orientation may direct the aggregation of amylin on membranes, whereas coupling between the two segments may mediate the transition to a toxic structure.


Subject(s)
Amyloid/chemistry , Micelles , Models, Molecular , Sodium Dodecyl Sulfate/chemistry , Amyloid/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , Diabetes Mellitus, Type 2/metabolism , Humans , Insulin-Secreting Cells/metabolism , Islet Amyloid Polypeptide , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...