Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Pharm Sci ; 112(1): 138-147, 2023 01.
Article in English | MEDLINE | ID: mdl-35667631

ABSTRACT

The succinic acid/succinate system has an excellent buffering capacity at acidic pH values (4.5-6.0), promising to be a buffer of choice for biologics having slightly acidic to basic isoelectric points (pI 6 - 9). However, its prevalence in drug products is limited due to the propensity (risk) of its components to crystallize during freezing and the consequent shift in the pH which might affect the product stability. Most of these previous assessments have been performed under operational conditions that do not simulate typical drug product processing conditions. In this work, we have characterized the physicochemical behavior of succinate formulations under representative pharmaceutical conditions. Our results indicate that the pH increases by ∼ 1.2 units in 25 mM and 250 mM succinate buffers at pharmaceutically relevant freezing conditions. X-ray diffractometry studies revealed selective crystallization of monosodium succinate, which is posed as the causative mechanism. This salt crystallization was not observed in the presence of 2% w/v sucrose, suggesting that this pH shift can be mitigated by including sucrose in the formulation. Additionally, three monoclonal antibodies (mAbs) that represent different IgG subtypes and span a range of pIs (5.9 - 8.8) were formulated with succinate and sucrose and subjected to freeze-thaw, frozen storage and lyophilization. No detrimental impact on quality attributes (QA) such as high molecular weight (HMW) species, turbidity, alteration in protein concentration and sub-visible particles, was observed of any of the mAbs tested. Lastly, drug formulations lyophilized in succinate buffer with sucrose demonstrated acceptable QA profiles upon accelerated kinetic storage stability, supporting the use of succinate buffers in mAb drug products.


Subject(s)
Biological Products , Succinic Acid , Succinic Acid/chemistry , Buffers , Hydrogen-Ion Concentration , Freeze Drying/methods , Succinates , Sucrose/chemistry , Drug Stability
2.
PDA J Pharm Sci Technol ; 76(6): 461-473, 2022.
Article in English | MEDLINE | ID: mdl-35169038

ABSTRACT

Product can experience a combination of cavitation and agitation stresses as a result of dropping post-manufacture. We optimized terephthalic acid (TA) dosimetry, hydroxyphenyl fluorescein fluorimetry, and p-nitrophenol calorimetry as tools to detect and quantify the levels of hydroxyl radicals generated in solution. Using TA dosimetry, we determined the level of hydroxyl radicals generated from a vial drop and found that it is a function of drop height and fill volume and that protein and excipients may serve to mitigate but not completely quench the radicals. Additionally, we optimized sonication and friability as scale-down models to simulate dropping stresses and applied them to assess the impact on the stability of biologics. Our results suggest that chemical degradation dominates when a protein is subjected to cavitation stress alone, and that physical degradation induced by air-liquid and solid-liquid interfaces is the dominant degradation mode when there is a combination of cavitation and agitation stress. Taken together, this work provides a quick and simplistic approach that can be applied during drug product process development to evaluate the impact of drop stresses on the stability of biologic drug product.


Subject(s)
Biological Products , Biological Products/chemistry , Sonication , Proteins/chemistry , Drug Development , Drug Stability
3.
J Pharm Sci ; 111(5): 1325-1334, 2022 05.
Article in English | MEDLINE | ID: mdl-34958824

ABSTRACT

The use of Closed System Drug-Transfer Devices (CSTDs) has increased significantly in recent years due to NIOSH and USP recommendations to use them during preparation of hazardous drugs. Mechanistic and material differences between CSTDs and traditional in-use components warrant an assessment of their impact on product quality and dosing accuracy. Using a combination of prevalent CSTDs with biologic molecules, we performed an extensive assessment of the effect of using CSTDs for dose preparation and observed no negative impact on product quality attributes. Additionally, we found that the CSTD hold-up volume is 2 to 4-fold higher than conventional in-use components and exhibited a strong dependence on the CSTD brand used. We also found that the CSTD brand and dosing volume have a major influence on dosing accuracy with suboptimal protein recovery at very low dosing volumes. We identified entrapment of product in the CSTD spike as the root cause for this sub-optimal recovery and found that flushing the CSTD spike with a brand-new syringe and not the dosing syringe aided in complete protein recovery. Taken together we present a systematic approach to evaluate the risks and impact of CSTD to drug product quality, dose preparation, and dosing accuracy.


Subject(s)
Occupational Exposure , Drug Compounding , Drug Development , Protective Devices , Syringes
4.
MAbs ; 9(3): 430-437, 2017 04.
Article in English | MEDLINE | ID: mdl-28125314

ABSTRACT

Bispecific antibodies are a growing class of therapeutic molecules. Many of the current bispecific formats require DNA engineering to convert the parental monoclonal antibodies into the final bispecific molecules. We describe here a method to generate bispecific molecules from hybridoma IgGs in 3-4 d using chemical conjugation of antigen-binding fragments (Fabs) (bisFabs). Proteolytic digestion conditions for each IgG isotype were analyzed to optimize the yield and quality of the final conjugates. The resulting bisFabs showed no significant amounts of homodimers or aggregates. The predictive value of murine bisFabs was tested by comparing the T-cell redirected cytotoxic activity of a panel of antibodies in either the bisFab or full-length IgG formats. A variety of antigens with different structures and expression levels was used to extend the comparison to a wide range of binding geometries and antigen densities. The activity observed for different murine bisFabs correlated with those observed for the full-length IgG format across multiple different antigen targets, supporting the use of bisFabs as a screening tool. Our method may also be used for the screening of bispecific antibodies with other mechanisms of action, allowing for a more rapid selection of lead therapeutic candidates.


Subject(s)
Antibodies, Bispecific/biosynthesis , Immunoglobulin Fab Fragments/biosynthesis , Immunoglobulin G/isolation & purification , Protein Engineering/methods , Animals , Antibodies, Bispecific/immunology , Antibodies, Bispecific/isolation & purification , Humans , Hybridomas , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin G/immunology , Mice
5.
ACS Appl Mater Interfaces ; 6(16): 14679-89, 2014 Aug 27.
Article in English | MEDLINE | ID: mdl-25046687

ABSTRACT

This study reports a facile biomineralization route for gold microplates (GMPs) synthesis using bovine serum albumin (BSA) as a reductant and stabilizing agent. Adding BSA to HAuCl4 solution yields spontaneous versatile anisotropic and partially hollow GMPs upon aging. We hypothesize that the instantaneous protein denaturation at low pH enabled access to serine and threonine hydroxyl, and sulfhydryl groups of BSA, which act as a reductant and stabilizer, respectively. This reaction could be hastened by increasing the temperature well beyond 65 °C. Transmission electron microscopy/X-ray diffraction studies revealed highly crystalline and anisotropic structures (triangle, pentagon, and rectangle). Atomic force microscopy/scanning electron microscopy analyses demonstrated unique morphology of microplates with a partially void core and BSA mineralized edge structure. RAW 264.7 mice peritoneal macrophage-microplate interaction studies using live cell confocal imaging reveal that cells are capable of selectively internalizing smaller GMPs. Large GMPs are preferentially picked with sharp vertices but cannot be internalized and exhibit frustrated phagocytosis-like phenomenon. We explored particle phagocytosis as an actin mediated process that recruits phagosome-like acidic organelles, shown by a lysosensor probe technique. The biocompatible GMPs exhibited ∼70% paclitaxel (PCL) loading and sustained release of PCL, showing antitumor activity with the MCF-7 cell line, and could be a novel drug carrier for breast cancer therapy.


Subject(s)
Drug Delivery Systems/methods , Macrophages/metabolism , Paclitaxel/chemistry , Phagocytosis/physiology , Animals , Cattle , Cell Line , Mice , Paclitaxel/administration & dosage , Serum Albumin, Bovine/chemistry
6.
Angew Chem Int Ed Engl ; 53(31): 8037-40, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-24706570

ABSTRACT

The design of polyvalent molecules, presenting multiple copies of a specific ligand, represents a promising strategy to inhibit pathogens and toxins. The ability to control independently the valency and the spacing between ligands would be valuable for elucidating structure-activity relationships and for designing potent polyvalent molecules. To that end, we designed monodisperse polypeptide-based polyvalent inhibitors of anthrax toxin in which multiple copies of an inhibitory toxin-binding peptide were separated by flexible peptide linkers. By tuning the valency and linker length, we designed polyvalent inhibitors that were over four orders of magnitude more potent than the corresponding monovalent ligands. This strategy for the rational design of monodisperse polyvalent molecules may not only be broadly applicable for the inhibition of toxins and pathogens, but also for controlling the nanoscale organization of cellular receptors to regulate signaling and the fate of stem cells.


Subject(s)
Bacterial Toxins/antagonists & inhibitors , Peptides/chemistry , Amino Acid Sequence , Antigens, Bacterial , Thermodynamics
7.
PLoS One ; 8(6): e64974, 2013.
Article in English | MEDLINE | ID: mdl-23750222

ABSTRACT

The fibrillation of Serum Amyloid A (SAA) - a major acute phase protein - is believed to play a role in the disease Amyloid A (AA) Amyloidosis. To better understand the amyloid formation pathway of SAA, we characterized the oligomerization, misfolding, and aggregation of a disease-associated isoform of human SAA - human SAA1.1 (hSAA1.1) - using techniques ranging from circular dichroism spectroscopy to atomic force microscopy, fluorescence spectroscopy, immunoblot studies, solubility measurements, and seeding experiments. We found that hSAA1.1 formed alpha helix-rich, marginally stable oligomers in vitro on refolding and cross-beta-rich aggregates following incubation at 37°C. Strikingly, while hSAA1.1 was not highly amyloidogenic in vitro, the addition of a single N-terminal methionine residue significantly enhanced the fibrillation propensity of hSAA1.1 and modulated its fibrillation pathway. A deeper understanding of the oligomerization and fibrillation pathway of hSAA1.1 may help elucidate its pathological role.


Subject(s)
Protein Multimerization , Serum Amyloid A Protein/chemistry , Humans , Methionine , Models, Molecular , Protein Isoforms/chemistry , Protein Refolding , Protein Structure, Secondary , Solubility
8.
J Biol Chem ; 288(4): 2744-55, 2013 Jan 25.
Article in English | MEDLINE | ID: mdl-23223242

ABSTRACT

Serum amyloid A (SAA) is best known for being the main component of amyloid in the inflammation-related disease amyloid A (AA) amyloidosis. Despite the high sequence identity among different SAA isoforms, not all SAA proteins are pathogenic. In most mouse strains, the AA deposits mostly consist of SAA1.1. Conversely, the CE/J type mouse expresses a single non-pathogenic SAA2.2 protein that is 94% identical to SAA1.1. Here we show that SAA1.1 and SAA2.2 differ in their quaternary structure, fibrillation kinetics, prefibrillar oligomers, and fibril morphology. At 37 °C and inflammation-related SAA concentrations, SAA1.1 exhibits an oligomer-rich fibrillation lag phase of a few days, whereas SAA2.2 shows virtually no lag phase and forms small fibrils within a few hours. Deep UV resonance Raman, far UV-circular dichroism, atomic force microscopy, and fibrillation cross-seeding experiments suggest that SAA1.1 and SAA2.2 fibrils possess different morphology. Both the long-lived oligomers of pathogenic SAA1.1 and the fleeting prefibrillar oligomers of non-pathogenic SAA2.2, but not their respective amyloid fibrils, permeabilized synthetic bilayer membranes in vitro. This study represents the first comprehensive comparison between the biophysical properties of SAA isoforms with distinct pathogenicities, and the results suggest that structural and kinetic differences in the oligomerization-fibrillation of SAA1.1 and SAA2.2, more than their intrinsic amyloidogenicity, may contribute to their diverse pathogenicity.


Subject(s)
Amyloidosis/metabolism , Serum Amyloid A Protein/chemistry , Animals , Biophysics/methods , Circular Dichroism , HEK293 Cells , Humans , Inflammation , Kinetics , Mice , Microscopy, Atomic Force/methods , Protein Binding , Protein Denaturation , Protein Folding , Protein Isoforms , Recombinant Proteins/chemistry , Serum Amyloid A Protein/metabolism , Spectrophotometry, Ultraviolet/methods
9.
Biochemistry ; 51(14): 3092-9, 2012 Apr 10.
Article in English | MEDLINE | ID: mdl-22448726

ABSTRACT

The fibrillar deposition of serum amyloid A (SAA) has been linked to the disease amyloid A (AA) amyloidosis. We have used the SAA isoform, SAA2.2, from the CE/J mouse strain, as a model system to explore the inherent structural and biophysical properties of SAA. Despite its nonpathogenic nature in vivo, SAA2.2 spontaneously forms fibrils in vitro, suggesting that SAA proteins are inherently amyloidogenic. However, whereas the importance of the amino terminus of SAA for fibril formation has been well documented, the influence of the proline-rich and presumably disordered carboxy terminus remains poorly understood. To clarify the inherent role of the carboxy terminus in the oligomerization and fibrillation of SAA, we truncated the proline-rich final 13 residues of SAA2.2. We found that unlike full-length SAA2.2, the carboxy-terminal truncated SAA2.2 (SAA2.2ΔC) did not oligomerize to a hexamer or octamer, but formed a high molecular weight soluble aggregate. Moreover, SAA2.2ΔC also exhibited a pronounced decrease in the rate of fibril formation. Intriguingly, when equimolar amounts of denatured SAA2.2 and SAA2.2ΔC were mixed and allowed to refold together, the mixture formed an octamer and exhibited rapid fibrillation kinetics, similar to those for full-length SAA2.2. These results suggest that the carboxy terminus of SAA, which is highly conserved among SAA sequences in all vertebrates, might play important structural roles, including modulating the folding, oligomerization, misfolding, and fibrillation of SAA.


Subject(s)
Amyloid/chemistry , Protein Folding , Serum Amyloid A Protein/chemistry , Amyloid/metabolism , Animals , Kinetics , Mice , Microscopy, Atomic Force , Molecular Weight , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Serum Amyloid A Protein/genetics , Serum Amyloid A Protein/metabolism
10.
Adv Drug Deliv Rev ; 61(11): 931-9, 2009 Sep 30.
Article in English | MEDLINE | ID: mdl-19596034

ABSTRACT

Nature makes extensive use of polyvalency-the simultaneous binding of multiple ligands to multiple complementary receptors. The concept of polyvalency can also be used to design synthetic scaffolds for applications ranging from the design of inhibitors for toxins and pathogens to delivery and imaging. This article reviews recent developments in the design of polyvalent constructs suitable for targeted delivery. Specifically, we will discuss recent developments in the design of scaffolds, the identification of ligands for targeting, and the presentation of ligands on the scaffold to optimize affinity and specificity for the target.


Subject(s)
Drug Design , Amino Acid Sequence , Drug Delivery Systems , Ligands , Molecular Sequence Data , Nanostructures
SELECTION OF CITATIONS
SEARCH DETAIL
...