Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS Lett ; 597(24): 3125-3134, 2023 12.
Article in English | MEDLINE | ID: mdl-38058189

ABSTRACT

Nonenzymatic template-directed replication would have been affected by co-solutes in a heterogeneous prebiotic soup due to lack of enzymatic machinery. Unlike in contemporary biology, these reactions use chemically activated nucleotides, which undergo rapid hydrolysis forming nucleoside monophosphates ('spent' monomers). These co-solutes cannot extend the primer but continue to base pair with the template, thereby interfering with replication. We, therefore, aimed to understand how a mixture of 'spent' ribonucleotides would affect nonenzymatic replication. We observed the inhibition of replication in the mixture, wherein the predominant contribution came from the cognate Watson-Crick monomer, showing potential sequence dependence. Our study highlights how nonenzymatic RNA replication would have been directly affected by co-solutes, with ramifications for the emergence of functional polymers in an RNA World.


Subject(s)
Nucleotides , RNA Replication , RNA/genetics , Ribonucleotides
2.
J Membr Biol ; 253(6): 589-608, 2020 12.
Article in English | MEDLINE | ID: mdl-33200235

ABSTRACT

Membrane compartmentalization is a fundamental feature of contemporary cellular life. Given this, it is rational to assume that at some stage in the early origins of life, membrane compartments would have potentially emerged to form a dynamic semipermeable barrier in primitive cells (protocells), protecting them from their surrounding environment. It is thought that such prebiological membranes would likely have played a crucial role in the emergence and evolution of life on the early Earth. Extant biological membranes are highly organized and complex, which is a consequence of a protracted evolutionary history. On the other hand, prebiotic membrane assemblies, which are thought to have preceded sophisticated contemporary membranes, are hypothesized to have been relatively simple and composed of single chain amphiphiles. Recent studies indicate that the evolution of prebiotic membranes potentially resulted from interactions between the membrane and its physicochemical environment. These studies have also speculated on the origin, composition, function and influence of environmental conditions on protocellular membranes as the niche parameters would have directly influenced their composition and biophysical properties. Nonetheless, the evolutionary pathways involved in the transition from prebiological membranes to contemporary membranes are largely unknown. This review critically evaluates existing research on prebiotic membranes in terms of their probable origin, composition, energetics, function and evolution. Notably, we outline new approaches that can further our understanding about how prebiotic membranes might have evolved in response to relevant physicochemical parameters that would have acted as pertinent selection pressures on the early Earth.


Subject(s)
Artificial Cells/chemistry , Cell Membrane/chemistry , Biological Evolution , Chemical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL