Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 13(601)2021 07 07.
Article in English | MEDLINE | ID: mdl-34233954

ABSTRACT

Staphylococcus aureus causes most skin infections in humans, and the emergence of methicillin-resistant S. aureus (MRSA) strains is a serious public health threat. There is an urgent clinical need for nonantibiotic immunotherapies to treat MRSA infections and prevent the spread of antibiotic resistance. Here, we investigated the pan-caspase inhibitor quinoline-valine-aspartic acid-difluorophenoxymethyl ketone (Q-VD-OPH) for efficacy against MRSA skin infection in mice. A single systemic dose of Q-VD-OPH decreased skin lesion sizes and reduced bacterial burden compared with vehicle-treated or untreated mice. Although Q-VD-OPH inhibited inflammasome-dependent apoptosis-associated speck-like protein containing caspase activation and recruitment domain (ASC) speck formation and caspase-1-mediated interleukin-1ß (IL-1ß) production, Q-VD-OPH maintained efficacy in mice deficient in IL-1ß, ASC, caspase-1, caspase-11, or gasdermin D. Thus, Q-VD-OPH efficacy was independent of inflammasome-mediated pyroptosis. Rather, Q-VD-OPH reduced apoptosis of monocytes and neutrophils. Moreover, Q-VD-OPH enhanced necroptosis of macrophages with concomitant increases in serum TNF and TNF-producing neutrophils, monocytes/macrophages, and neutrophils in the infected skin. Consistent with this, Q-VD-OPH lacked efficacy in mice deficient in TNF (with associated reduced neutrophil influx and necroptosis), in mice deficient in TNF/IL-1R and anti-TNF antibody-treated WT mice. In vitro studies revealed that combined caspase-3, caspase-8, and caspase-9 inhibition reduced apoptosis, and combined caspase-1, caspase-8, and caspase-11 inhibition increased TNF, suggesting a mechanism for Q-VD-OPH efficacy in vivo. Last, Q-VD-OPH also had a therapeutic effect against Streptococcus pyogenes and Pseudomonas aeruginosa skin infections in mice. Collectively, pan-caspase inhibition represents a potential host-directed immunotherapy against MRSA and other bacterial skin infections.


Subject(s)
Caspases , Methicillin-Resistant Staphylococcus aureus , Animals , Caspase 1 , Caspase Inhibitors/pharmacology , Immunotherapy , Inflammasomes , Interleukin-1beta , Mice , Tumor Necrosis Factor Inhibitors
2.
J Clin Invest ; 131(5)2021 03 01.
Article in English | MEDLINE | ID: mdl-33645549

ABSTRACT

IgE induced by type 2 immune responses in atopic dermatitis is implicated in the progression of atopic dermatitis to other allergic diseases, including food allergies, allergic rhinitis, and asthma. However, the keratinocyte-derived signals that promote IgE and ensuing allergic diseases remain unclear. Herein, in a mouse model of atopic dermatitis-like skin inflammation induced by epicutaneous Staphylococcus aureus exposure, keratinocyte release of IL­36α along with IL-4 triggered B cell IgE class-switching, plasma cell differentiation, and increased serum IgE levels-all of which were abrogated in IL-36R-deficient mice or anti-IL­36R-blocking antibody-treated mice. Moreover, skin allergen sensitization during S. aureus epicutaneous exposure-induced IL-36 responses was required for the development of allergen-specific lung inflammation. In translating these findings, elevated IL­36 cytokines in human atopic dermatitis skin and in IL­36 receptor antagonist-deficiency patients coincided with increased serum IgE levels. Collectively, keratinocyte-initiated IL­36 responses represent a key mechanism and potential therapeutic target against allergic diseases.


Subject(s)
Dermatitis, Atopic/immunology , Immunoglobulin E/immunology , Interleukin-1/immunology , Keratinocytes/immunology , Plasma Cells/immunology , Staphylococcus aureus/immunology , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Dermatitis, Atopic/genetics , Dermatitis, Atopic/microbiology , Humans , Immunoglobulin Class Switching , Immunoglobulin E/genetics , Interleukin-1/genetics , Interleukin-4/genetics , Interleukin-4/immunology , Keratinocytes/microbiology , Mice , Mice, Knockout , Plasma Cells/pathology
3.
J Invest Dermatol ; 141(2): 274-284, 2021 02.
Article in English | MEDLINE | ID: mdl-32943210

ABSTRACT

Atopic dermatitis (AD) is a common, chronic, inflammatory skin condition characterized by recurrent and pruritic skin eruptions. Multiple factors contribute to the pathogenesis of AD, including skin barrier dysfunction, microbial dysbiosis, and immune dysregulation. Interactions among these factors form a complex, multidirectional network that can reinforce atopic skin disease but can also be ameliorated by targeted therapies. This review summarizes the complex interactions among contributing factors in AD and the implications on disease development and therapeutic interventions.


Subject(s)
Dermatitis, Atopic/etiology , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/immunology , Dysbiosis , Humans , Microbiota , Skin/microbiology
4.
Proc Natl Acad Sci U S A ; 116(8): 3100-3105, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30718426

ABSTRACT

Denileukin diftitox (DAB-IL-2, Ontak) is a diphtheria-toxin-based fusion protein that depletes CD25-positive cells including regulatory T cells and has been approved for the treatment of persistent or recurrent cutaneous T cell lymphoma. However, the clinical use of denileukin diftitox was limited by vascular leak toxicity and production issues related to drug aggregation and purity. We found that a single amino acid substitution (V6A) in a motif associated with vascular leak induction yields a fully active, second-generation biologic, s-DAB-IL-2(V6A), which elicits 50-fold less human umbilical vein endothelial cell monolayer permeation and is 3.7-fold less lethal to mice by LD50 analysis than s-DAB-IL-2. Additionally, to overcome aggregation problems, we developed a production method for the fusion toxin using Corynebacterium diphtheriae that secretes fully folded, biologically active, monomeric s-DAB-IL-2 into the culture medium. Using the poorly immunogenic mouse B16F10 melanoma model, we initiated treatment 7 days after tumor challenge and observed that, while both s-DAB-IL-2(V6A) and s-DAB-IL-2 are inhibitors of tumor growth, the capacity to treat with higher doses of s-DAB-IL-2(V6A) could provide a superior activity window. In a sequential dual-therapy study in tumors that have progressed for 10 days, both s-DAB-IL-2(V6A) and s-DAB-IL-2 given before checkpoint inhibition with anti-programmed cell death-1 (anti-PD-1) antibodies inhibited tumor growth, while either drug given as monotherapy had less effect. s-DAB-IL-2(V6A), a fully monomeric protein with reduced vascular leak, is a second-generation diphtheria-toxin-based fusion protein with promise as a cancer immunotherapeutic both alone and in conjunction with PD-1 blockade.


Subject(s)
Diphtheria Toxin/administration & dosage , Interleukin-2/administration & dosage , Melanoma, Experimental/drug therapy , Programmed Cell Death 1 Receptor/genetics , Amino Acid Substitution/genetics , Antibodies/administration & dosage , Cell Proliferation/drug effects , Corynebacterium diphtheriae/chemistry , Corynebacterium diphtheriae/pathogenicity , Diphtheria Toxin/chemistry , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Immunosuppressive Agents/administration & dosage , Immunotoxins/administration & dosage , Interleukin-2/chemistry , Interleukin-2 Receptor alpha Subunit/drug effects , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Receptors, Interleukin-2/genetics , Receptors, Interleukin-2/immunology , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/chemistry , T-Lymphocytes, Regulatory/drug effects
5.
Biochemistry ; 57(1): 117-135, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29039929

ABSTRACT

Tabtoxinine-ß-lactam (TßL), also known as wildfire toxin, is a time- and ATP-dependent inhibitor of glutamine synthetase produced by plant pathogenic strains of Pseudomonas syringae. Here we demonstrate that recombinant glutamine synthetase from Escherichia coli phosphorylates the C3-hydroxyl group of the TßL 3-(S)-hydroxy-ß-lactam (3-HßL) warhead. Phosphorylation of TßL generates a stable, noncovalent enzyme-ADP-inhibitor complex that resembles the glutamine synthetase tetrahedral transition state. The TßL ß-lactam ring remains intact during enzyme inhibition, making TßL mechanistically distinct from traditional ß-lactam antibiotics such as penicillin. Our findings could enable the design of new 3-HßL transition state inhibitors targeting enzymes in the ATP-dependent carboxylate-amine ligase superfamily with broad therapeutic potential in many disease areas.


Subject(s)
Adenosine Triphosphate/metabolism , Azetidines/pharmacology , Bacterial Toxins/pharmacology , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli/enzymology , Glutamate-Ammonia Ligase/antagonists & inhibitors , Azetidines/isolation & purification , Azetidines/metabolism , Bacterial Toxins/biosynthesis , Bacterial Toxins/isolation & purification , Catalysis , Chromatography, Liquid , Escherichia coli/drug effects , Escherichia coli/growth & development , Mass Spectrometry , Microbial Sensitivity Tests , Nuclear Magnetic Resonance, Biomolecular , Phosphorylation , Pseudomonas syringae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...