Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev Lett ; 123(5): 050402, 2019 Aug 02.
Article in English | MEDLINE | ID: mdl-31491290

ABSTRACT

We study the spectrum of elementary excitations of a dipolar Bose gas in a three-dimensional anisotropic trap across the superfluid-supersolid phase transition. Theoretically, we show that, when entering the supersolid phase, two distinct excitation branches appear, respectively associated with dominantly crystal and superfluid excitations. These results confirm infinite-system predictions, showing that finite-size effects play only a small qualitative role, and connect the two branches to the simultaneous occurrence of crystal and superfluid orders. Experimentally, we probe compressional excitations in an Er quantum gas across the phase diagram. While in the Bose-Einstein condensate regime the system exhibits an ordinary quadrupole oscillation, in the supersolid regime we observe a striking two-frequency response of the system, related to the two spontaneously broken symmetries.

2.
Phys Rev Lett ; 122(18): 183401, 2019 May 10.
Article in English | MEDLINE | ID: mdl-31144863

ABSTRACT

We measure the excitation spectrum of a stable dipolar Bose-Einstein condensate over a wide momentum range via Bragg spectroscopy. We precisely control the relative strength ε_{dd} of the dipolar to the contact interactions and observe that the spectrum increasingly deviates from the linear phononic behavior for increasing ε_{dd}. Reaching the dipolar-dominated regime ε_{dd}>1, we observe the emergence of a roton minimum in the spectrum and its softening towards instability. We characterize how the excitation energy and the strength of the density-density correlations at the roton momentum vary with ε_{dd}. Our findings are in excellent agreement with numerical calculations based on mean-field Bogoliubov theory. When including beyond-mean-field corrections, in the form of a Lee-Huang-Yang potential, we observe a quantitative deviation from the experiment, questioning the validity of such a description in the roton regime.

3.
Phys Rev Lett ; 121(9): 093602, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-30230905

ABSTRACT

We realize a two-component dipolar Fermi gas with tunable interactions, using erbium atoms. Employing a lattice-protection technique, we selectively prepare deeply degenerate mixtures of the two lowest spin states and perform high-resolution Feshbach spectroscopy in an optical dipole trap. We identify a comparatively broad Feshbach resonance and map the interspin scattering length in its vicinity. The Fermi mixture shows a remarkable collisional stability in the strongly interacting regime, providing a first step towards studies of superfluid pairing, crossing from Cooper pairs to bound molecules, in presence of dipole-dipole interactions.

SELECTION OF CITATIONS
SEARCH DETAIL