Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuron ; 111(15): 2383-2398.e7, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37315555

ABSTRACT

The circadian clock protein BMAL1 modulates glial activation and amyloid-beta deposition in mice. However, the effects of BMAL1 on other aspects of neurodegenerative pathology are unknown. Here, we show that global post-natal deletion of Bmal1 in mouse tauopathy or alpha-synucleinopathy models unexpectedly suppresses both tau and alpha-synuclein (αSyn) aggregation and related pathology. Astrocyte-specific Bmal1 deletion is sufficient to prevent both αSyn and tau pathology in vivo and induces astrocyte activation and the expression of Bag3, a chaperone critical for macroautophagy. Astrocyte Bmal1 deletion enhances phagocytosis of αSyn and tau in a Bag3-dependent manner, and astrocyte Bag3 overexpression is sufficient to mitigate αSyn spreading in vivo. In humans, BAG3 is increased in patients with AD and is highly expressed in disease-associated astrocytes (DAAs). Our results suggest that early activation of astrocytes via Bmal1 deletion induces Bag3 to protect against tau and αSyn pathologies, providing new insights into astrocyte-specific therapies for neurodegeneration.


Subject(s)
Synucleinopathies , Tauopathies , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Amyloid beta-Peptides/metabolism , Apoptosis Regulatory Proteins/metabolism , ARNTL Transcription Factors/genetics , Astrocytes/metabolism , Synucleinopathies/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Tauopathies/metabolism
2.
Mol Neurodegener ; 17(1): 30, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35414105

ABSTRACT

BACKGROUND: Neuronal uptake and subsequent spread of proteopathic seeds, such as αS (alpha-synuclein), Tau, and TDP-43, contribute to neurodegeneration. The cellular machinery participating in this process is poorly understood. One proteinopathy called multisystem proteinopathy (MSP) is associated with dominant mutations in Valosin Containing Protein (VCP). MSP patients have muscle and neuronal degeneration characterized by aggregate pathology that can include αS, Tau and TDP-43. METHODS: We performed a fluorescent cell sorting based genome-wide CRISPR-Cas9 screen in αS biosensors. αS and TDP-43 seeding activity under varied conditions was assessed using FRET/Flow biosensor cells or immunofluorescence for phosphorylated αS or TDP-43 in primary cultured neurons. We analyzed in vivo seeding activity by immunostaining for phosphorylated αS following intrastriatal injection of αS seeds in control or VCP disease mutation carrying mice. RESULTS: One hundred fifty-four genes were identified as suppressors of αS seeding. One suppressor, VCP when chemically or genetically inhibited increased αS seeding in cells and neurons. This was not due to an increase in αS uptake or αS protein levels. MSP-VCP mutation expression increased αS seeding in cells and neurons. Intrastriatal injection of αS preformed fibrils (PFF) into VCP-MSP mutation carrying mice increased phospho αS expression as compared to control mice. Cells stably expressing fluorescently tagged TDP-43 C-terminal fragment FRET pairs (TDP-43 biosensors) generate FRET when seeded with TDP-43 PFF but not monomeric TDP-43. VCP inhibition or MSP-VCP mutant expression increases TDP-43 seeding in TDP-43 biosensors. Similarly, treatment of neurons with TDP-43 PFFs generates high molecular weight insoluble phosphorylated TDP-43 after 5 days. This TDP-43 seed dependent increase in phosphorlyated TDP-43 is further augmented in MSP-VCP mutant expressing neurons. CONCLUSION: Using an unbiased screen, we identified the multifunctional AAA ATPase VCP as a suppressor of αS and TDP-43 aggregate seeding in cells and neurons. VCP facilitates the clearance of damaged lysosomes via lysophagy. We propose that VCP's surveillance of permeabilized endosomes may protect against the proteopathic spread of pathogenic protein aggregates. The spread of distinct aggregate species may dictate the pleiotropic phenotypes and pathologies in VCP associated MSP.


Subject(s)
DNA-Binding Proteins , Neurons , Animals , DNA-Binding Proteins/metabolism , Humans , Mice , Mutation , Neurons/metabolism , Valosin Containing Protein/genetics , Valosin Containing Protein/metabolism
3.
J Biol Chem ; 289(19): 13335-46, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24675076

ABSTRACT

It is well known that mitochondrial metabolism of pyruvate is critical for insulin secretion; however, we know little about how pyruvate is transported into mitochondria in ß-cells. Part of the reason for this lack of knowledge is that the carrier gene was only discovered in 2012. In the current study, we assess the role of the recently identified carrier in the regulation of insulin secretion. Our studies show that ß-cells express both mitochondrial pyruvate carriers (Mpc1 and Mpc2). Using both pharmacological inhibitors and siRNA-mediated knockdown of the MPCs we show that this carrier plays a key role in regulating insulin secretion in clonal 832/13 ß-cells as well as rat and human islets. We also show that the MPC is an essential regulator of both the ATP-regulated potassium (KATP) channel-dependent and -independent pathways of insulin secretion. Inhibition of the MPC blocks the glucose-stimulated increase in two key signaling molecules involved in regulating insulin secretion, the ATP/ADP ratio and NADPH/NADP(+) ratio. The MPC also plays a role in in vivo glucose homeostasis as inhibition of MPC by the pharmacological inhibitor α-cyano-ß-(1-phenylindol-3-yl)-acrylate (UK5099) resulted in impaired glucose tolerance. These studies clearly show that the newly identified mitochondrial pyruvate carrier sits at an important branching point in nutrient metabolism and that it is an essential regulator of insulin secretion.


Subject(s)
Glucose/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Mitochondria/metabolism , Pyruvic Acid/metabolism , Acrylates/pharmacology , Adenosine Diphosphate/genetics , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/genetics , Adenosine Triphosphate/metabolism , Animals , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Cell Line, Tumor , Female , Gene Knockdown Techniques , Glucose/genetics , Humans , Insulin/genetics , Insulin Secretion , Insulin-Secreting Cells/cytology , Male , Mitochondria/genetics , Mitochondrial Membrane Transport Proteins , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Monocarboxylic Acid Transporters , NADP/genetics , NADP/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...