Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
J Neurosci ; 44(18)2024 May 01.
Article in English | MEDLINE | ID: mdl-38548340

ABSTRACT

A long-standing question in vision science is how the three cone photoreceptor types-long (L), medium (M), and short (S) wavelength sensitive-combine to generate our perception of color. Hue perception can be described along two opponent axes: red-green and blue-yellow. Psychophysical measurements of color appearance indicate that the cone inputs to the red-green and blue-yellow opponent axes are M vs. L + S and L vs. M + S, respectively. However, the "cardinal directions of color space" revealed by psychophysical measurements of color detection thresholds following adaptation are L vs. M and S vs. L + M. These cardinal directions match the most common cone-opponent retinal ganglion cells (RGCs) in the primate retina. Accordingly, the cone opponency necessary for color appearance is thought to be established in the cortex. While neurons with the appropriate M vs. L + S and L vs. M + S opponency have been reported in the retina and lateral geniculate nucleus, their existence continues to be debated. Resolving this long-standing debate is necessary because a complete account of the cone opponency in the retinal output is critical for understanding how downstream neural circuits process color. Here, we performed adaptive optics calcium imaging to noninvasively measure foveal RGC light responses in the living Macaca fascicularis eye. We confirm the presence of L vs. M + S and M vs. L + S neurons with noncardinal cone opponency and demonstrate that cone-opponent signals in the retinal output are more diverse than classically thought.


Subject(s)
Color Perception , Fovea Centralis , Retinal Cone Photoreceptor Cells , Retinal Ganglion Cells , Animals , Retinal Ganglion Cells/physiology , Retinal Cone Photoreceptor Cells/physiology , Fovea Centralis/physiology , Color Perception/physiology , Photic Stimulation/methods , Male , Female , Macaca fascicularis
2.
eNeuro ; 11(1)2024 Jan.
Article in English | MEDLINE | ID: mdl-38290840

ABSTRACT

Considerable progress has been made in studying the receptive fields of the most common primate retinal ganglion cell (RGC) types, such as parasol RGCs. Much less is known about the rarer primate RGC types and the circuitry that gives rise to noncanonical receptive field structures. The goal of this study was to analyze synaptic inputs to smooth monostratified RGCs to determine the origins of their complex spatial receptive fields, which contain isolated regions of high sensitivity called "hotspots." Interestingly, smooth monostratified RGCs co-stratify with the well-studied parasol RGCs and are thus constrained to receiving input from bipolar and amacrine cells with processes sharing the same layer, raising the question of how their functional differences originate. Through 3D reconstructions of circuitry and synapses onto ON smooth monostratified and ON parasol RGCs from central macaque retina, we identified four distinct sampling strategies employed by smooth and parasol RGCs to extract diverse response properties from co-stratifying bipolar and amacrine cells. The two RGC types differed in the proportion of amacrine cell input, relative contributions of co-stratifying bipolar cell types, amount of synaptic input per bipolar cell, and spatial distribution of bipolar cell synapses. Our results indicate that the smooth RGC's complex receptive field structure arises through spatial asymmetries in excitatory bipolar cell input which formed several discrete clusters comparable with physiologically measured hotspots. Taken together, our results demonstrate how the striking differences between ON parasol and ON smooth monostratified RGCs arise from distinct strategies for sampling a common set of synaptic inputs.


Subject(s)
Retina , Retinal Ganglion Cells , Animals , Retinal Ganglion Cells/physiology , Retina/physiology , Synapses/physiology , Macaca
3.
bioRxiv ; 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37745616

ABSTRACT

A long-standing question in vision science is how the three cone photoreceptor types - long (L), medium (M) and short (S) wavelength sensitive - combine to generate our perception of color. Hue perception can be described along two opponent axes: red-green and blue-yellow. Psychophysical measurements of color appearance indicate that the cone inputs to the red-green and blue-yellow opponent axes are M vs. L+S and L vs. M+S, respectively. However, the "cardinal directions of color space" revealed by psychophysical measurements of color detection thresholds are L vs. M and S vs. L+M. The cardinal directions match the most common cone-opponent retinal ganglion cells (RGCs) in the primate retina. Accordingly, the cone opponency necessary for color appearance is thought to be established in cortex. However, small populations with the appropriate M vs. L+S and L vs. M+S cone-opponency have been reported in large surveys of cone inputs to primate RGCs and their projections to the lateral geniculate nucleus (LGN) yet their existence continues to be debated. Resolving this long-standing open question is needed as a complete account of the cone-opponency in the retinal output is critical for efforts to understand how downstream neural circuits process color. Here, we performed adaptive optics calcium imaging to longitudinally and noninvasively measurements of the foveal RGC light responses in the living macaque eye. We confirm the presence of L vs. M+S and M vs. L+S neurons with non-cardinal cone-opponency and demonstrate that cone-opponent signals in the retinal output are substantially more diverse than classically thought.

4.
PLoS One ; 17(11): e0278261, 2022.
Article in English | MEDLINE | ID: mdl-36445926

ABSTRACT

The primate fovea is specialized for high acuity chromatic vision, with the highest density of cone photoreceptors and a disproportionately large representation in visual cortex. The unique visual properties conferred by the fovea are conveyed to the brain by retinal ganglion cells, the somas of which lie at the margin of the foveal pit. Microelectrode recordings of these centermost retinal ganglion cells have been challenging due to the fragility of the fovea in the excised retina. Here we overcome this challenge by combining high resolution fluorescence adaptive optics ophthalmoscopy with calcium imaging to optically record functional responses of foveal retinal ganglion cells in the living eye. We use this approach to study the chromatic responses and spatial transfer functions of retinal ganglion cells using spatially uniform fields modulated in different directions in color space and monochromatic drifting gratings. We recorded from over 350 cells across three Macaca fascicularis primates over a time period of weeks to months. We find that the majority of the L vs. M cone opponent cells serving the most central foveolar cones have spatial transfer functions that peak at high spatial frequencies (20-40 c/deg), reflecting strong surround inhibition that sacrifices sensitivity at low spatial frequencies but preserves the transmission of fine detail in the retinal image. In addition, we fit to the drifting grating data a detailed model of how ganglion cell responses draw on the cone mosaic to derive receptive field properties of L vs. M cone opponent cells at the very center of the foveola. The fits are consistent with the hypothesis that foveal midget ganglion cells are specialized to preserve information at the resolution of the cone mosaic. By characterizing the functional properties of retinal ganglion cells in vivo through adaptive optics, we characterize the response characteristics of these cells in situ.


Subject(s)
Fovea Centralis , Retinal Ganglion Cells , Animals , Macaca fascicularis , Retina , Retinal Cone Photoreceptor Cells
5.
eNeuro ; 9(6)2022.
Article in English | MEDLINE | ID: mdl-36351817

ABSTRACT

Zebrafish retinal cone signals shift in spectral shape through larval, juvenile, and adult development as expression patterns of eight cone-opsin genes change. An algorithm extracting signal amplitudes for the component cone spectral types is developed and tested on two thyroxin receptor ß2 (trß2) gain-of-function lines crx:mYFP-2A-trß2 and gnat2:mYFP-2A-trß2, allowing correlation between opsin signaling and opsin immunoreactivity in lines with different developmental timing and cell-type expression of this red-opsin-promoting transgene. Both adult transgenics became complete, or nearly complete, "red-cone dichromats," with disproportionately large long-wavelength-sensitive (LWS)1 opsin amplitudes as compared with controls, where LWS1 and LWS2 amplitudes were about equal, and significant signals from SWS1, SWS2, and Rh2 opsins were detected. But in transgenic larvae and juveniles of both lines it was LWS2 amplitudes that increased, with LWS1 cone signals rarely encountered. In gnat2:mYFP-2A-trß2 embryos at 5 d postfertilization (dpf), red-opsin immunoreactive cone density doubled, but red-opsin amplitudes (LWS2) increased <10%, and green-opsin, blue-opsin, and UV-opsin signals were unchanged, despite co-expressed red opsins, and the finding that an sws1 UV-opsin reporter gene was shut down by the gnat2:mYFP-2A-trß2 transgene. By contrast both LWS2 red-cone amplitudes and the density of red-cone immunoreactivity more than doubled in 5-dpf crx:mYFP-2A-trß2 embryos, while UV-cone amplitudes were reduced 90%. Embryonic cones with trß2 gain-of-function transgenes were morphologically distinct from control red, blue or UV cones, with wider inner segments and shorter axons than red cones, suggesting cone spectral specification, opsin immunoreactivity and shape are influenced by the abundance and developmental timing of trß2 expression.


Subject(s)
Retinal Cone Photoreceptor Cells , Zebrafish , Animals , Retinal Cone Photoreceptor Cells/metabolism , Opsins/genetics , Opsins/metabolism , Thyroxine/genetics , Thyroxine/metabolism , Receptors, Thyroid Hormone/genetics , Receptors, Thyroid Hormone/metabolism , Gain of Function Mutation , Rod Opsins/genetics , Rod Opsins/metabolism , Animals, Genetically Modified , Larva/metabolism , Transgenes
6.
Sci Rep ; 12(1): 15160, 2022 09 07.
Article in English | MEDLINE | ID: mdl-36071126

ABSTRACT

Ganglion cells are the projection neurons of the retina. Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin and also receive input from rods and cones via bipolar cells and amacrine cells. In primates, multiple types of ipRGCs have been identified. The ipRGCs with somas in the ganglion cell layer have been studied extensively, but less is known about those with somas in the inner nuclear layer, the "displaced" cells. To investigate their synaptic inputs, three sets of horizontal, ultrathin sections through central macaque retina were collected using serial block-face scanning electron microscopy. One displaced ipRGC received nearly all of its excitatory inputs from ON bipolar cells and would therefore be expected to have ON responses to light. In each of the three volumes, there was also at least one cell that had a large soma in the inner nuclear layer, varicose axons and dendrites with a large diameter that formed large, extremely sparse arbor in the outermost stratum of the inner plexiform layer. They were identified as the displaced M1 type of ipRGCs based on this morphology and on the high density of granules in their somas. They received extensive input from amacrine cells, including the dopaminergic type. The vast majority of their excitatory inputs were from OFF bipolar cells, including two subtypes with extensive input from the primary rod pathway. They would be expected to have OFF responses to light stimuli below the threshold for melanopsin or soon after the offset of a light stimulus.


Subject(s)
Macaca , Retina , Amacrine Cells/metabolism , Animals , Ganglia , Retina/metabolism , Retinal Ganglion Cells/metabolism
7.
Curr Biol ; 32(11): 2529-2538.e4, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35588744

ABSTRACT

The detection of motion direction is a fundamental visual function and a classic model for neural computation. In the non-primate retina, direction selectivity arises in starburst amacrine cell (SAC) dendrites, which provide selective inhibition to direction-selective retinal ganglion cells (dsRGCs). Although SACs are present in primates, their connectivity and the existence of dsRGCs remain open questions. Here, we present a connectomic reconstruction of the primate ON SAC circuit from a serial electron microscopy volume of the macaque central retina. We show that the structural basis for the SACs' ability to confer directional selectivity on postsynaptic neurons is conserved. SACs selectively target a candidate homolog to the mammalian ON-sustained dsRGCs that project to the accessory optic system (AOS) and contribute to gaze-stabilizing reflexes. These results indicate that the capacity to compute motion direction is present in the retina, which is earlier in the primate visual system than classically thought.


Subject(s)
Amacrine Cells , Connectome , Amacrine Cells/physiology , Animals , Dendrites/physiology , Mammals , Primates , Retina/physiology , Retinal Ganglion Cells/physiology , Synapses/physiology
8.
Semin Cell Dev Biol ; 126: 66-70, 2022 06.
Article in English | MEDLINE | ID: mdl-33994300

ABSTRACT

Intrinsically photosensitive retinal ganglion cells (ipRGCs) respond directly to light by virtue of containing melanopsin which peaks at about 483 nm. However, in primates, ipRGCs also receive color opponent inputs from short-wavelength-sensitive (S) cone circuits that are well-suited to encode circadian changes in the color of the sky that accompany the rising and setting sun. Here, we review the retinal circuits that endow primate ipRGCs with the cone-opponency capable of encoding the color of the sky and contributing to the wide-ranging effects of short-wavelength light on ipRGC-mediated non-image-forming visual function in humans.


Subject(s)
Retina , Retinal Cone Photoreceptor Cells , Animals , Light , Primates , Retinal Ganglion Cells , Vision, Ocular
9.
J Comp Neurol ; 529(11): 3098-3111, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33843050

ABSTRACT

In primates, broad thorny retinal ganglion cells are highly sensitive to small, moving stimuli. They have tortuous, fine dendrites with many short, spine-like branches that occupy three contiguous strata in the middle of the inner plexiform layer. The neural circuits that generate their responses to moving stimuli are not well-understood, and that was the goal of this study. A connectome from central macaque retina was generated by serial block-face scanning electron microscopy, a broad thorny cell was reconstructed, and its synaptic inputs were analyzed. It received fewer than 2% of its inputs from both ON and OFF types of bipolar cells; the vast majority of its inputs were from amacrine cells. The presynaptic amacrine cells were reconstructed, and seven types were identified based on their characteristic morphology. Two types of narrow-field cells, knotty bistratified Type 1 and wavy multistratified Type 2, were identified. Two types of medium-field amacrine cells, ON starburst and spiny, were also presynaptic to the broad thorny cell. Three types of wide-field amacrine cells, wiry Type 2, stellate wavy, and semilunar Type 2, also made synapses onto the broad thorny cell. Physiological experiments using a macaque retinal preparation in vitro confirmed that broad thorny cells received robust excitatory input from both the ON and the OFF pathways. Given the paucity of bipolar cell inputs, it is likely that amacrine cells provided much of the excitatory input, in addition to inhibitory input.


Subject(s)
Amacrine Cells/physiology , Connectome/methods , Retina/cytology , Retina/physiology , Retinal Ganglion Cells/physiology , Synapses/physiology , Amacrine Cells/ultrastructure , Animals , Macaca , Macaca nemestrina , Male , Retina/ultrastructure , Retinal Ganglion Cells/ultrastructure , Synapses/ultrastructure
10.
Curr Biol ; 30(23): R1409-R1410, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33290703

ABSTRACT

A classic and highly influential model of visual processing proposes that the role of the retina is to compress visual information for optimal transmission to the brain [1]. Drawing on ideas from information theory, an efficient retinal code could be defined as one that reduces redundancy to communicate as much information as possible, given the optic nerve's limited capacity. From this redundancy reduction hypothesis, a theory of retinal color coding emerged in which the three most common retinal ganglion cell (RGC) types captured much of the variance in natural spectra [2]. Within this compact code, the 'Blue-ON' small bistratified RGC was thought to be the only pathway necessary for comparing short (S) wavelength-sensitive cones to long (L) and medium (M) wavelength-sensitive cones [3,4]. Here, we discovered a new wide-field RGC type receiving the same cone-opponent input as the small bistratified RGC, indicating that there is more redundancy in the retinal color code than previously appreciated.


Subject(s)
Color Vision/physiology , Retinal Cone Photoreceptor Cells/physiology , Retinal Ganglion Cells/physiology , Animals , Color , Color Perception , Macaca , Visual Pathways/physiology
11.
Dev Biol ; 465(1): 23-30, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32645357

ABSTRACT

Congenital anomalies of external genitalia affect approximately 1 in 125 live male births. Development of the genital tubercle, the precursor of the penis and clitoris, is regulated by the urethral plate epithelium, an endodermal signaling center. Signaling activity of the urethral plate is mediated by Sonic hedgehog (SHH), which coordinates outgrowth and patterning of the genital tubercle by controlling cell cycle kinetics and expression of downstream genes. The mechanisms that govern Shh transcription in urethral plate cells are largely unknown. Here we show that deletion of Foxa1 and Foxa2 results in persistent cloaca, an incomplete separation of urinary, genital, and anorectal tracts, and severe hypospadias, a failure of urethral tubulogenesis. Loss of Foxa2 and only one copy of Foxa1 results in urethral fistula, an additional opening of the penile urethra. Foxa1/a2 participate in an autoregulatory feedback loop with Shh, in which FOXA1 and FOXA2 positively regulate transcription of Shh in the urethra, and SHH feeds back to negatively regulate Foxa1 and Foxa2 expression. These findings reveal novel roles for Foxa genes in development of the urethral tube and in division of the embryonic cloaca.


Subject(s)
Cloaca/embryology , Embryo, Mammalian/embryology , Hedgehog Proteins/metabolism , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-beta/metabolism , Ureter/embryology , Animals , Hedgehog Proteins/genetics , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-beta/genetics , Mice , Mice, Transgenic
12.
J Opt Soc Am A Opt Image Sci Vis ; 37(4): A244-A254, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32400553

ABSTRACT

The spatial and spectral topography of the cone mosaic set the limits for detection and discrimination of chromatic sinewave gratings. Here, we sought to compare the spatial characteristics of mechanisms mediating hue perception against those mediating chromatic detection in individuals with known spectral topography and with optical aberrations removed with adaptive optics. Chromatic detection sensitivity in general exceeded previous measurements and decreased monotonically for increasingly skewed cone spectral compositions. The spatial grain of hue perception was significantly coarser than chromatic detection, consistent with separate neural mechanisms for color vision operating at different spatial scales.

13.
Nat Genet ; 52(4): 448-457, 2020 04.
Article in English | MEDLINE | ID: mdl-32246132

ABSTRACT

Precision oncology relies on accurate discovery and interpretation of genomic variants, enabling individualized diagnosis, prognosis and therapy selection. We found that six prominent somatic cancer variant knowledgebases were highly disparate in content, structure and supporting primary literature, impeding consensus when evaluating variants and their relevance in a clinical setting. We developed a framework for harmonizing variant interpretations to produce a meta-knowledgebase of 12,856 aggregate interpretations. We demonstrated large gains in overlap between resources across variants, diseases and drugs as a result of this harmonization. We subsequently demonstrated improved matching between a patient cohort and harmonized interpretations of potential clinical significance, observing an increase from an average of 33% per individual knowledgebase to 57% in aggregate. Our analyses illuminate the need for open, interoperable sharing of variant interpretation data. We also provide a freely available web interface (search.cancervariants.org) for exploring the harmonized interpretations from these six knowledgebases.


Subject(s)
Genetic Variation/genetics , Neoplasms/genetics , Databases, Genetic , Diploidy , Genomics/methods , Humans , Knowledge Bases , Precision Medicine/methods
14.
Curr Biol ; 30(7): 1269-1274.e2, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32084404

ABSTRACT

Melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs) synchronize our biological clocks with the external light/dark cycle [1]. In addition to photoentrainment, they mediate the effects of light experience as a central modulator of mood, learning, and health [2]. This makes a complete account of the circuity responsible for ipRGCs' light responses essential to understanding their diverse roles in our well-being. Considerable progress has been made in understanding ipRGCs' melanopsin-mediated responses in rodents [3-5]. However, in primates, ipRGCs also have a rare blue-OFF response mediated by an unknown short-wavelength-sensitive (S)-cone circuit [6]. Identifying this S-cone circuit is particularly important because ipRGCs mediate many of the wide-ranging effects of short-wavelength light on human biology. These effects are often attributed to melanopsin, but there is evidence for an S-cone contribution as well [7, 8]. Here, we tested the hypothesis that the S-OFF response is mediated by the S-ON pathway through inhibitory input from an undiscovered S-cone amacrine cell. Using serial electron microscopy in the macaque retina, we reconstructed the neurons and synapses of the S-cone connectome, revealing a novel inhibitory interneuron, an amacrine cell, receiving excitatory glutamatergic input exclusively from S-ON bipolar cells. This S-cone amacrine cell makes highly selective inhibitory synapses onto ipRGCs, resulting in a blue-OFF response. Identification of the S-cone amacrine cell provides the missing component of an evolutionarily ancient circuit using spectral information for non-image forming visual functions.


Subject(s)
Color Vision/physiology , Macaca nemestrina/physiology , Visual Pathways/physiology , Visual Perception/physiology , Animals , Male
15.
J Comp Neurol ; 528(9): 1588-1598, 2020 06 15.
Article in English | MEDLINE | ID: mdl-31845339

ABSTRACT

Parasol cells are one of the major types of primate retinal ganglion cells. The goal of this study was to describe the synaptic inputs that shape the light responses of the ON type of parasol cells, which are excited by increments in light intensity. A connectome from central macaque retina was generated by serial blockface scanning electron microscopy. Six neighboring ON parasol cells were reconstructed, and their synaptic inputs were analyzed. On average, they received 21% of their input from bipolar cells, excitatory local circuit neurons receiving input from cones. The majority of their input was from amacrine cells, local circuit neurons of the inner retina that are typically inhibitory. Their contributions to the neural circuit providing input to parasol cells are not well-understood, and the focus of this study was on the presynaptic wide-field amacrine cells, which provided 17% of the input to ON parasol cells. These are GABAergic amacrine cells with long, relatively straight dendrites, and sometimes also axons, that run in a single, narrow stratum of the inner plexiform layer. The presynaptic wide-field amacrine cells were reconstructed, and two types were identified based on their characteristic morphology. One presynaptic amacrine cell was identified as semilunar type 2, a polyaxonal cell that is electrically coupled to ON parasol cells. A second amacrine was identified as wiry type 2, a type known to be sensitive to motion. These inputs likely make ON parasol cells more sensitive to stimuli that are rapidly changing outside their classical receptive fields.


Subject(s)
Amacrine Cells/ultrastructure , Retinal Ganglion Cells/ultrastructure , Synapses/ultrastructure , Animals , Connectome , Macaca nemestrina , Male
16.
BMC Cancer ; 19(1): 1039, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31684899

ABSTRACT

BACKGROUND: Understanding mechanisms underlying specific chemotherapeutic responses in subtypes of cancer may improve identification of treatment strategies most likely to benefit particular patients. For example, triple-negative breast cancer (TNBC) patients have variable response to the chemotherapeutic agent cisplatin. Understanding the basis of treatment response in cancer subtypes will lead to more informed decisions about selection of treatment strategies. METHODS: In this study we used an integrative functional genomics approach to investigate the molecular mechanisms underlying known cisplatin-response differences among subtypes of TNBC. To identify changes in gene expression that could explain mechanisms of resistance, we examined 102 evolutionarily conserved cisplatin-associated genes, evaluating their differential expression in the cisplatin-sensitive, basal-like 1 (BL1) and basal-like 2 (BL2) subtypes, and the two cisplatin-resistant, luminal androgen receptor (LAR) and mesenchymal (M) subtypes of TNBC. RESULTS: We found 20 genes that were differentially expressed in at least one subtype. Fifteen of the 20 genes are associated with cell death and are distributed among all TNBC subtypes. The less cisplatin-responsive LAR and M TNBC subtypes show different regulation of 13 genes compared to the more sensitive BL1 and BL2 subtypes. These 13 genes identify a variety of cisplatin-resistance mechanisms including increased transport and detoxification of cisplatin, and mis-regulation of the epithelial to mesenchymal transition. CONCLUSIONS: We identified gene signatures in resistant TNBC subtypes indicative of mechanisms of cisplatin. Our results indicate that response to cisplatin in TNBC has a complex foundation based on impact of treatment on distinct cellular pathways. We find that examination of expression data in the context of heterogeneous data such as drug-gene interactions leads to a better understanding of mechanisms at work in cancer therapy response.


Subject(s)
Antineoplastic Agents/therapeutic use , Cisplatin/therapeutic use , Drug Resistance, Neoplasm/genetics , Genomics/methods , Triple Negative Breast Neoplasms/drug therapy , Animals , Biological Evolution , Cell Line, Tumor , Conserved Sequence , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Mice , Rats , Receptors, Androgen/metabolism
17.
Vis Neurosci ; 36: E010, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31581960

ABSTRACT

There are four cone morphologies in zebrafish, corresponding to UV (U), blue (B), green (G), and red (R)-sensing types; yet genetically, eight cone opsins are expressed. How eight opsins are physiologically siloed in four cone types is not well understood, and in larvae, cone physiological spectral peaks are unstudied. We use a spectral model to infer cone wavelength peaks, semisaturation irradiances, and saturation amplitudes from electroretinogram (ERG) datasets composed of multi-wavelength, multi-irradiance, aspartate-isolated, cone-PIII signals, as compiled from many 5- to 12-day larvae and 8- to 18-month-old adult eyes isolated from wild-type (WT) or roy orbison (roy) strains. Analysis suggests (in nm) a seven-cone, U-360/B1-427/B2-440/G1-460/G3-476/R1-575/R2-556, spectral physiology in WT larvae but a six-cone, U-349/B1-414/G3-483/G4-495/R1-572/R2-556, structure in WT adults. In roy larvae, there is a five-cone structure: U-373/B2-440/G1-460/R1-575/R2-556; in roy adults, there is a four-cone structure, B1-410/G3-482/R1-571/R2-556. Existence of multiple B, G, and R types is inferred from shifts in peaks with red or blue backgrounds. Cones were either high or low semisaturation types. The more sensitive, low semisaturation types included U, B1, and G1 cones [3.0-3.6 log(quanta·µm-2·s-1)]. The less sensitive, high semisaturation types were B2, G3, G4, R1, and R2 types [4.3-4.7 log(quanta·µm-2·s-1)]. In both WT and roy, U- and B- cone saturation amplitudes were greater in larvae than in adults, while G-cone saturation levels were greater in adults. R-cone saturation amplitudes were the largest (50-60% of maximal dataset amplitudes) and constant throughout development. WT and roy larvae differed in cone signal levels, with lesser UV- and greater G-cone amplitudes occurring in roy, indicating strain variation in physiological development of cone signals. These physiological measures of cone types suggest chromatic processing in zebrafish involves at least four to seven spectral signal processing pools.


Subject(s)
Larva/physiology , Optical Phenomena , Retinal Cone Photoreceptor Cells/physiology , Zebrafish/physiology , Animals , Electroretinography , Larva/growth & development , Zebrafish/growth & development
18.
Front Neurosci ; 13: 865, 2019.
Article in English | MEDLINE | ID: mdl-31474825

ABSTRACT

Midget retinal ganglion cells (RGCs) make up the majority of foveal RGCs in the primate retina. The receptive fields of midget RGCs exhibit both spectral and spatial opponency and are implicated in both color and achromatic form vision, yet the exact mechanisms linking their responses to visual perception remain unclear. Efforts to develop color vision models that accurately predict all the features of human color and form vision based on midget RGCs provide a case study connecting experimental and theoretical neuroscience, drawing on diverse research areas such as anatomy, physiology, psychophysics, and computer vision. Recent technological advances have allowed researchers to test some predictions of color vision models in new and precise ways, producing results that challenge traditional views. Here, we review the progress in developing models of color-coding receptive fields that are consistent with human psychophysics, the biology of the primate visual system and the response properties of midget RGCs.

19.
Sci Rep ; 9(1): 11913, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31417169

ABSTRACT

Midget retinal ganglion cells (RGCs) are the most common RGC type in the primate retina. Their responses have been proposed to mediate both color and spatial vision, yet the specific links between midget RGC responses and visual perception are unclear. Previous research on the dual roles of midget RGCs has focused on those comparing long (L) vs. middle (M) wavelength sensitive cones. However, there is evidence for several other rare midget RGC subtypes receiving S-cone input, but their role in color and spatial vision is uncertain. Here, we confirm the existence of the single S-cone center OFF midget RGC circuit in the central retina of macaque monkey both structurally and functionally. We investigated the receptive field properties of the S-OFF midget circuit with single cell electrophysiology and 3D electron microscopy reconstructions of the upstream circuitry. Like the well-studied L vs. M midget RGCs, the S-OFF midget RGCs have a center-surround receptive field consistent with a role in spatial vision. While spectral opponency in a primate RGC is classically assumed to contribute to hue perception, a role supporting edge detection is more consistent with the S-OFF midget RGC receptive field structure and studies of hue perception.


Subject(s)
Color Vision/physiology , Macaca fascicularis/physiology , Retinal Cone Photoreceptor Cells/physiology , Action Potentials/physiology , Animals , Male , Retinal Cone Photoreceptor Cells/ultrastructure , Retinal Ganglion Cells/metabolism
20.
Vis Neurosci ; 36: E004, 2019 01.
Article in English | MEDLINE | ID: mdl-31199211

ABSTRACT

There are more than 30 distinct types of mammalian retinal ganglion cells, each sensitive to different features of the visual environment. In rabbit retina, they can be grouped into four classes according to their morphology and stratification of their dendrites in the inner plexiform layer (IPL). The goal of this study was to describe the synaptic inputs to one type of Class IV ganglion cell, the third member of the sparsely branched Class IV cells (SB3). One cell of this type was partially reconstructed in a retinal connectome developed using automated transmission electron microscopy (ATEM). It had slender, relatively straight dendrites that ramify in the sublamina a of the IPL. The dendrites of the SB3 cell were always postsynaptic in the IPL, supporting its identity as a ganglion cell. It received 29% of its input from bipolar cells, a value in the middle of the range for rabbit retinal ganglion cells studied previously. The SB3 cell typically received only one synapse per bipolar cell from multiple types of presumed OFF bipolar cells; reciprocal synapses from amacrine cells at the dyad synapses were infrequent. In a few instances, the bipolar cells presynaptic to the SB3 ganglion cell also provided input to an amacrine cell presynaptic to the ganglion cell. There was apparently no crossover inhibition from narrow-field ON amacrine cells. Most of the amacrine cell inputs were from axons and dendrites of GABAergic amacrine cells, likely providing inhibitory input from outside the classical receptive field.


Subject(s)
Amacrine Cells/ultrastructure , Retinal Bipolar Cells/ultrastructure , Retinal Ganglion Cells/ultrastructure , Synapses/ultrastructure , Animals , Connectome , Female , GABAergic Neurons/ultrastructure , Microscopy, Electron, Scanning Transmission , Microscopy, Electron, Transmission , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...