Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Micromech Microeng ; 34(3)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38586082

ABSTRACT

Intracortical microelectrodes (IMEs) can be used to restore motor and sensory function as a part of brain-computer interfaces in individuals with neuromusculoskeletal disorders. However, the neuroinflammatory response to IMEs can result in their premature failure, leading to reduced therapeutic efficacy. Mechanically-adaptive, resveratrol-eluting (MARE) neural probes target two mechanisms believed to contribute to the neuroinflammatory response by reducing the mechanical mismatch between the brain tissue and device, as well as locally delivering an antioxidant therapeutic. To create the mechanically-adaptive substrate, a dispersion, casting, and evaporation method is used, followed by a microfabrication process to integrate functional recording electrodes on the material. Resveratrol release experiments were completed to generate a resveratrol release profile and demonstrated that the MARE probes are capable of long-term controlled release. Additionally, our results showed that resveratrol can be degraded by laser-micromachining, an important consideration for future device fabrication. Finally, the electrodes were shown to have a suitable impedance for single-unit neural recording and could record single units in vivo.

SELECTION OF CITATIONS
SEARCH DETAIL