Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 269(Pt 2): 131918, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697418

ABSTRACT

Polygalacturonases (PGs) can modulate chemistry and mechanical properties of the plant cell wall through the degradation of pectins, one of its major constituents. PGs are largely used in food, beverage, textile, and paper industries to increase processes' performances. To improve the use of PGs, knowledge of their biochemical, structural and functional features is of prime importance. Our study aims at characterizing SmoPG1, a polygalacturonase from Selaginella moellendorffii, that belongs to the lycophytes. Transcription data showed that SmoPG1 was mainly expressed in S. moellendorffii shoots while phylogenetic analyses suggested that SmoPG1 is an exo-PG, which was confirmed by the biochemical characterization following its expression in heterologous system. Indeed, LC-MS/MS oligoprofiling using various pectic substrates identified galacturonic acid (GalA) as the main hydrolysis product. We found that SmoPG1 was most active on polygalacturonic acid (PGA) at pH 5, and that its activity could be modulated by different cations (Ca2+, Cu2+, Fe2+, Mg2+, Mn2+, Na2+, Zn2+). In addition, SmoPG1 was inhibited by green tea catechins, including (-)-epigallocatechin-3-gallate (EGCG). Docking analyses and MD simulations showed in detail amino acids responsible for the SmoPG1-EGCG interaction. Considering its expression yield and activity, SmoPG1 appears as a prime candidate for the industrial production of GalA.


Subject(s)
Pectins , Polygalacturonase , Selaginellaceae , Polygalacturonase/metabolism , Polygalacturonase/chemistry , Polygalacturonase/genetics , Selaginellaceae/chemistry , Selaginellaceae/genetics , Selaginellaceae/enzymology , Pectins/metabolism , Pectins/chemistry , Phylogeny , Substrate Specificity , Molecular Docking Simulation , Amino Acid Sequence , Hydrogen-Ion Concentration , Hydrolysis , Hexuronic Acids
2.
Plant Cell Physiol ; 65(2): 301-318, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38190549

ABSTRACT

Pectin methylesterases (PMEs) modify homogalacturonan's chemistry and play a key role in regulating primary cell wall mechanical properties. Here, we report on Arabidopsis AtPME2, which we found to be highly expressed during lateral root emergence and dark-grown hypocotyl elongation. We showed that dark-grown hypocotyl elongation was reduced in knock-out mutant lines as compared to the control. The latter was related to the decreased total PME activity as well as increased stiffness of the cell wall in the apical part of the hypocotyl. To relate phenotypic analyses to the biochemical specificity of the enzyme, we produced the mature active enzyme using heterologous expression in Pichia pastoris and characterized it through the use of a generic plant PME antiserum. AtPME2 is more active at neutral compared to acidic pH, on pectins with a degree of 55-70% methylesterification. We further showed that the mode of action of AtPME2 can vary according to pH, from high processivity (at pH8) to low processivity (at pH5), and relate these observations to the differences in electrostatic potential of the protein. Our study brings insights into how the pH-dependent regulation by PME activity could affect the pectin structure and associated cell wall mechanical properties.


Subject(s)
Arabidopsis , Carboxylic Ester Hydrolases , Hypocotyl , Hypocotyl/genetics , Hypocotyl/metabolism , Arabidopsis/metabolism , Cell Wall/metabolism , Mutation/genetics , Pectins/metabolism , Hydrogen-Ion Concentration
3.
Plant Cell ; 35(8): 3073-3091, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37202370

ABSTRACT

Polygalacturonases (PGs) fine-tune pectins to modulate cell wall chemistry and mechanics, impacting plant development. The large number of PGs encoded in plant genomes leads to questions on the diversity and specificity of distinct isozymes. Herein, we report the crystal structures of 2 Arabidopsis thaliana PGs, POLYGALACTURONASE LATERAL ROOT (PGLR), and ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE2 (ADPG2), which are coexpressed during root development. We first determined the amino acid variations and steric clashes that explain the absence of inhibition of the plant PGs by endogenous PG-inhibiting proteins (PGIPs). Although their beta helix folds are highly similar, PGLR and ADPG2 subsites in the substrate binding groove are occupied by divergent amino acids. By combining molecular dynamic simulations, analysis of enzyme kinetics, and hydrolysis products, we showed that these structural differences translated into distinct enzyme-substrate dynamics and enzyme processivities: ADPG2 showed greater substrate fluctuations with hydrolysis products, oligogalacturonides (OGs), with a degree of polymerization (DP) of ≤4, while the DP of OGs generated by PGLR was between 5 and 9. Using the Arabidopsis root as a developmental model, exogenous application of purified enzymes showed that the highly processive ADPG2 had major effects on both root cell elongation and cell adhesion. This work highlights the importance of PG processivity on pectin degradation regulating plant development.


Subject(s)
Arabidopsis , Polygalacturonase , Polygalacturonase/genetics , Polygalacturonase/metabolism , Arabidopsis/metabolism , Pectins/metabolism , Proteins/metabolism , Cell Wall/metabolism
4.
Mol Plant ; 16(5): 865-881, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37002606

ABSTRACT

Most organisms adjust their development according to the environmental conditions. For the majority, this implies the sensing of alterations to cell walls caused by different cues. Despite the relevance of this process, few molecular players involved in cell wall sensing are known and characterized. Here, we show that the wall-associated kinase-like protein RESISTANCE TO FUSARIUM OXYSPORUM 1 (RFO1) is required for plant growth and early defense against Fusarium oxysporum and functions by sensing changes in the pectin methylation levels in the cell wall. The RFO1 dwell time at the plasma membrane is affected by the pectin methylation status at the cell wall, regulating MITOGEN-ACTIVATED PROTEIN KINASE and gene expression. We show that the extracellular domain of RFO1 binds de-methylated pectin in vitro, whose distribution in the cell wall is altered during F. oxysporum infection. Further analyses also indicate that RFO1 is required for the BR-dependent plant growth alteration in response to inhibition of pectin de-methyl-esterase activity at the cell wall. Collectively, our work demonstrates that RFO1 is a sensor of the pectin methylation status that plays a unique dual role in plant growth and defense against vascular pathogens.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Fusarium , Pectins , Plant Immunity , Arabidopsis/growth & development , Arabidopsis/immunology , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Wall/metabolism , Gene Expression Regulation, Plant , Methylation , Pectins/metabolism , Protein Kinases/metabolism , Fusarium/immunology
5.
Int J Biol Macromol ; 231: 123137, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36639075

ABSTRACT

Pectins, complex polysaccharides and major components of the plant primary cell wall, can be degraded by pectate lyases (PLs). PLs cleave glycosidic bonds of homogalacturonans (HG), the main pectic domain, by ß-elimination, releasing unsaturated oligogalacturonides (OGs). To understand the catalytic mechanism and structure/function of these enzymes, we characterized VdPelB from Verticillium dahliae. We first solved the crystal structure of VdPelB at 1.2 Å resolution showing that it is a right-handed parallel ß-helix structure. Molecular dynamics (MD) simulations further highlighted the dynamics of the enzyme in complex with substrates that vary in their degree of methylesterification, identifying amino acids involved in substrate binding and cleavage of non-methylesterified pectins. We then biochemically characterized wild type and mutated forms of VdPelB. Pectate lyase VdPelB was most active on non-methylesterified pectins, at pH 8.0 in presence of Ca2+ ions. The VdPelB-G125R mutant was most active at pH 9.0 and showed higher relative activity compared to native enzyme. The OGs released by VdPelB differed to that of previously characterized PLs, showing its peculiar specificity in relation to its structure. OGs released from Verticillium-partially tolerant and sensitive flax cultivars differed which could facilitate the identification VdPelB-mediated elicitors of defence responses.


Subject(s)
Molecular Dynamics Simulation , Polysaccharide-Lyases , Polysaccharide-Lyases/chemistry , Glycosides , Pectins/chemistry , Substrate Specificity
6.
Carbohydr Polym ; 262: 117943, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33838820

ABSTRACT

Aspergillus spp. are well-known producers of pectinases commonly used in the industry. Aspergillus aculeatinus is a recently identified species but poorly characterized. This study aimed at giving a comprehensive characterization of the enzymatic potential of the O822 strain to produce Rhamnogalacturonan type I (RGI)-degrading enzymes. Proteomic analysis identified cell wall degrading enzymes (cellulases, hemicellulases, and pectinases) that accounted for 92 % of total secreted proteins. Twelve out of fifty proteins were identified as RGI-degrading enzymes. NMR and enzymatic assays revealed high levels of arabinofuranosidase, arabinanase, galactanase, rhamnogalacturonan hydrolases and rhamnogalacturonan acetylesterase activities in aqueous extracts. Viscosity assays carried out with RGI-rich camelina mucilage confirmed the efficiency of enzymes secreted by O822 to hydrolyze RGI, by decreasing viscosity by 70 %. Apple juice trials carried out at laboratory and pilot scale showed an increase in filtration flow rate and yield, paving the way for an industrial use of enzymes derived from A. aculeatinus.


Subject(s)
Aspergillus/enzymology , Filtration/methods , Fruit and Vegetable Juices , Fungal Proteins/metabolism , Rhamnogalacturonans/metabolism , Carbohydrate Metabolism , Cellulases/metabolism , Food Handling/methods , Glycoside Hydrolases/metabolism , Hydrolases/metabolism , Malus , Pectins/metabolism , Polygalacturonase/metabolism , Proteomics
7.
Int J Biol Macromol ; 176: 165-176, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33561463

ABSTRACT

Pectin, the major non-cellulosic component of primary cell wall can be degraded by polygalacturonases (PGs) and pectin methylesterases (PMEs) during pathogen attack on plants. We characterized two novel enzymes, VdPG2 and VdPME1, from the fungal plant pathogen Verticillium dahliae. VdPME1 was most active on citrus methylesterified pectin (55-70%) at pH 6 and a temperature of 40 °C, while VdPG2 was most active on polygalacturonic acid at pH 5 and a temperature of 50 °C. Using LC-MS/MS oligoprofiling, and various pectins, the mode of action of VdPME1 and VdPG2 were determined. VdPME1 was shown to be processive, in accordance with the electrostatic potential of the enzyme. VdPG2 was identified as endo-PG releasing both methylesterified and non-methylesterified oligogalacturonides (OGs). Additionally, when flax roots were used as substrate, acetylated OGs were detected. The comparisons of OGs released from Verticillium-susceptible and partially resistant flax cultivars identified new possible elicitor of plant defence responses.


Subject(s)
Ascomycota/enzymology , Carboxylic Ester Hydrolases/metabolism , Fungal Proteins/metabolism , Polygalacturonase/metabolism , Ascomycota/genetics , Ascomycota/pathogenicity , Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/genetics , Flax/metabolism , Fungal Proteins/chemistry , Fungal Proteins/genetics , Kinetics , Models, Molecular , Pectins/metabolism , Phylogeny , Plant Diseases/microbiology , Plant Roots/metabolism , Polygalacturonase/chemistry , Polygalacturonase/genetics , Static Electricity , Substrate Specificity
8.
Carbohydr Polym ; 248: 116752, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32919555

ABSTRACT

Rhamnogalaturonans I (RGI) pectins, which are a major component of the plant primary cell wall, can be recalcitrant to digestion by commercial enzymatic cocktails, in particular during fruit juice clarification process. To overcome these problems and get better insights into RGI degradation, three RGI degrading enzymes (RHG: Endo-rhamnogalacturonase; ABF: α-Arabinofuranosidases; GAN: Endo-ß-1,4-galactanase) from Aspergillus aculeatinus were expressed in Pichia pastoris, purified and fully biochemically characterized. All three enzymes showed acidic pH optimum, and temperature optima between 40-50 °C. The Km values were 0.5 mg.ml-1, 1.64 mg.ml-1 and 3.72 mg.ml-1 for RHG, ABF, GAN, respectively. NMR analysis confirmed an endo-acting mode of action for RHG and GAN, and exo-acting mode for ABF. The application potential of these enzymes was assessed by measuring changes in viscosity of RGI-rich camelina mucilage, showing that RHG-GAN enzymes induced a decrease in viscosity by altering the structures of the RGI backbone and sidechains.


Subject(s)
Aspergillus/enzymology , Fungal Proteins/metabolism , Pectins/metabolism , Aspergillus/genetics , Aspergillus/metabolism , Cell Wall/chemistry , Enzyme Stability , Fungal Proteins/genetics , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Hydrogen-Ion Concentration , Kinetics , Magnetic Resonance Spectroscopy , Pichia/genetics , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/metabolism , Recombinant Proteins/metabolism , Temperature
9.
Plant J ; 103(2): 617-633, 2020 07.
Article in English | MEDLINE | ID: mdl-32215973

ABSTRACT

Plant cell wall remodeling plays a key role in the control of cell elongation and differentiation. In particular, fine-tuning of the degree of methylesterification of pectins was previously reported to control developmental processes as diverse as pollen germination, pollen tube elongation, emergence of primordia or elongation of dark-grown hypocotyls. However, how pectin degradation can modulate plant development has remained elusive. Here we report the characterization of a polygalacturonase (PG), AtPGLR, the gene for which is highly expressed at the onset of lateral root emergence in Arabidopsis. Due to gene compensation mechanisms, mutant approaches failed to determine the involvement of AtPGLR in plant growth. To overcome this issue, AtPGLR has been expressed heterologously in the yeast Pichia pastoris and biochemically characterized. We showed that AtPGLR is an endo-PG that preferentially releases non-methylesterified oligogalacturonides with a short degree of polymerization (< 8) at acidic pH. The application of the purified recombinant protein on Amaryllis pollen tubes, an excellent model for studying cell wall remodeling at acidic pH, induced abnormal pollen tubes or cytoplasmic leakage in the subapical dome of the pollen tube tip, where non-methylesterified pectin epitopes are detected. Those leaks could either be repaired by new ß-glucan deposits (mostly callose) in the cell wall or promoted dramatic burst of the pollen tube. Our work presents the full biochemical characterization of an Arabidopsis PG and highlights the importance of pectin integrity in pollen tube elongation.


Subject(s)
Arabidopsis Proteins/physiology , Pollen Tube/physiology , Polygalacturonase/physiology , Arabidopsis/drug effects , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/pharmacology , Plant Roots/metabolism , Plants, Genetically Modified , Pollen Tube/drug effects , Polygalacturonase/genetics , Polygalacturonase/pharmacology , Saccharomycetales
10.
Proc Natl Acad Sci U S A ; 116(39): 19743-19752, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31501325

ABSTRACT

Despite an ever-increasing interest for the use of pectin-derived oligogalacturonides (OGs) as biological control agents in agriculture, very little information exists-mainly for technical reasons-on the nature and activity of the OGs that accumulate during pathogen infection. Here we developed a sensitive OG profiling method, which revealed unsuspected features of the OGs generated during infection of Arabidopsis thaliana with the fungus Botrytis cinerea Indeed, in contrast to previous reports, most OGs were acetyl- and methylesterified, and 80% of them were produced by fungal pectin lyases, not by polygalacturonases. Polygalacturonase products did not accumulate as larger size OGs but were converted into oxidized GalA dimers. Finally, the comparison of the OGs and transcriptomes of leaves infected with B. cinerea mutants with reduced pectinolytic activity but with decreased or increased virulence, respectively, identified candidate OG elicitors. In conclusion, OG analysis provides insights into the enzymatic arms race between plant and pathogen and facilitates the identification of defense elicitors.


Subject(s)
Arabidopsis/metabolism , Botrytis/pathogenicity , Hexuronic Acids/metabolism , Arabidopsis Proteins/metabolism , Botrytis/metabolism , Gene Expression Regulation, Plant/genetics , Pectins/metabolism , Plant Diseases/microbiology , Plant Leaves/metabolism , Polygalacturonase/metabolism , Signal Transduction
11.
Int J Biol Macromol ; 132: 1140-1146, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30978419

ABSTRACT

The discovery of molecules that can inhibit the action of phytopathogens is essential to find alternative to current pesticides. Pectin methylesterases (PME), enzymes that fine-tune the degree of methylesterification of plant cell wall pectins, play a key role in the pathogenicity of fungi or bacteria. Here we report the synthesis of new lactoside derivatives and their analysis as potential PME inhibitors using three plants and one fungal PME. Because of its structure, abundance and reduced cost, lactose was chosen as a case study. Lactoside derivatives were obtained by TEMPO-mediated oxidation of methyl lactoside, followed by an esterification procedure. Three derivatives were synthesized: sodium (methyl-lactosid)uronate, methyl (methyl-lactosid)uronate and butyl (methyl-lactosid)uronate. The inhibition of the plant and pathogen enzyme activities by lactoside derivatives was measured in vitro, showing the importance of the substitution on lactose: methyl (methyl-lactosid)uronate was more efficient than butyl (methyl-lactosid)uronate. These results were confirmed by docking analysis showing the difference in the interaction between lactoside derivatives and PME proteins. In conclusion, this study identified novel inhibitors of pectin remodeling enzymes.


Subject(s)
Carboxylic Ester Hydrolases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Lactose/chemistry , Lactose/pharmacology , Citrus sinensis/enzymology , Enzyme Inhibitors/chemical synthesis , Lactose/chemical synthesis
12.
Front Microbiol ; 8: 939, 2017.
Article in English | MEDLINE | ID: mdl-28611743

ABSTRACT

The genus Mycoplasma, a group of free-living, wall-less prokaryotes includes more than 100 species of which dozens are primary pathogens of humans and domesticated animals. Mycoplasma species isolated from wildlife are rarely investigated but could provide a fuller picture of the evolutionary history and diversity of this genus. In 2013 several isolates from wild Caprinae were tentatively assigned to a new species, Mycoplasma (M.) feriruminatoris sp. nov., characterized by an unusually rapid growth in vitro and close genetic proximity to ruminant pathogenic species. We suspected that atypical isolates recently collected from Alpine ibex in France belonged to this new species. The present study was undertaken to verify this hypothesis and to further characterize the French ibex isolates. Phylogenetic analyses were performed to identify the isolates and position them in trees containing several other mycoplasma species pathogenic to domesticated ruminants. Population diversity was characterized by genomic macrorestriction and by examining the capacity of different strains to produce capsular polysaccharides, a feature now known to vary amongst mycoplasma species pathogenic to ruminants. This is the first report of M. feriruminatoris isolation from Alpine ibex in France. Phylogenetic analyses further suggested that M. feriruminatoris might constitute a 4th species in a genetic cluster that so far contains only important ruminant pathogens, the so-called Mycoplasma mycoides cluster. A PCR assay for specific identification is proposed. These French isolates were not clonal, despite being collected in a restricted region of the Alps, which signifies a considerable diversity of the new species. Strains were able to concomitantly produce two types of capsular polysaccharides, ß-(1→6)-galactan and ß-(1→6)-glucan, with variation in their respective ratio, a feature never before described in mycoplasmas.

13.
J Exp Bot ; 67(14): 4325-38, 2016 07.
Article in English | MEDLINE | ID: mdl-27259555

ABSTRACT

Subtilisin-like proteases (SBTs) constitute a large family of extracellular plant proteases, the function of which is still largely unknown. In tomato plants, the expression of SBT3 was found to be induced in response to wounding and insect attack in injured leaves but not in healthy systemic tissues. The time course of SBT3 induction resembled that of proteinase inhibitor II and other late wound response genes suggesting a role for SBT3 in herbivore defense. Consistent with such a role, larvae of the specialist herbivore Manduca sexta performed better on transgenic plants silenced for SBT3 expression (SBT3-SI). Supporting a contribution of SBT3 to systemic wound signaling, systemic induction of late wound response genes was attenuated in SBT3-SI plants. The partial loss of insect resistance may thus be explained by a reduction in systemic defense gene expression. Alternatively, SBT3 may play a post-ingestive role in plant defense. Similar to other anti-nutritive proteins, SBT3 was found to be stable and active in the insect's digestive system, where it may act on unidentified proteins of insect or plant origin. Finally, a reduction in the level of pectin methylesterification that was observed in transgenic plants with altered levels of SBT3 expression suggested an involvement of SBT3 in the regulation of pectin methylesterases (PMEs). While such a role has been described in other systems, PME activity and the degree of pectin methylesterification did not correlate with the level of insect resistance in SBT3-SI and SBT3 overexpressing plants and are thus unrelated to the observed resistance phenotype.


Subject(s)
Plant Proteins/physiology , Solanum lycopersicum/physiology , Subtilisins/physiology , Animals , Herbivory , Solanum lycopersicum/enzymology , Manduca , Peptide Hydrolases/physiology , Plants, Genetically Modified , Reverse Transcriptase Polymerase Chain Reaction
14.
Int J Biol Macromol ; 81: 681-91, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26342461

ABSTRACT

Pectin methylesterases (PMEs) play a central role in pectin remodeling during plant development. They are also present in phytopathogens such as bacteria and fungi. We investigated the substrate specificity and pH dependence of plant and fungi PMEs using tailor-made pectic substrates. For this purpose, we used two plant PMEs (from orange peel: Citrus sinensis and from Arabidopsis thaliana) and one fungal PME (from Botrytis cinerea). We showed that plant and fungi PMEs differed in their substrate specificity and pH dependence, and that there were some differences between plant PMEs. We further investigated the inhibition of these enzyme activities using characterized polyphenols such as catechins and tannic acid. We showed that PMEs differed in their sensitivity to chemical compounds. In particular, fungal PME was not sensitive to inhibition. Finally, we screened for novel chemical inhibitors of PMEs using a chemical library of ∼3600 compounds. We identified a hundred new inhibitors of plant PMEs, but none had an effect on the fungal enzyme. This study sheds new light on the specificity of pectin methylesterases and provides new tools to modulate their activity.


Subject(s)
Carboxylic Ester Hydrolases/chemistry , Fungi/enzymology , Plants/enzymology , Amino Acid Sequence , Carboxylic Ester Hydrolases/antagonists & inhibitors , Carboxylic Ester Hydrolases/isolation & purification , Carboxylic Ester Hydrolases/metabolism , Drug Discovery , Drug Evaluation, Preclinical , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hydrogen-Ion Concentration , Molecular Sequence Data , Polyphenols/pharmacology , Sequence Alignment , Small Molecule Libraries , Substrate Specificity
15.
Appl Environ Microbiol ; 81(2): 676-87, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25398856

ABSTRACT

Mycoplasmas of the Mycoplasma mycoides cluster are all ruminant pathogens. Mycoplasma mycoides subsp. mycoides is responsible for contagious bovine pleuropneumonia and is known to produce capsular polysaccharide (CPS) and exopolysaccharide (EPS). Previous studies have strongly suggested a role for Mycoplasma mycoides subsp. mycoides polysaccharides in pathogenicity. Mycoplasma mycoides subsp. mycoides-secreted EPS was recently characterized as a ß(1→6)-galactofuranose homopolymer (galactan) identical to the capsular product. Here, we extended the characterization of secreted polysaccharides to all other members of the M. mycoides cluster: M. capricolum subsp. capripneumoniae, M. capricolum subsp. capricolum, M. leachii, and M. mycoides subsp. capri (including the LC and Capri serovars). Extracted EPS was characterized by nuclear magnetic resonance, resulting in the identification of a homopolymer of ß(1→2)-glucopyranose (glucan) in M. capricolum subsp. capripneumoniae and M. leachii. Monoclonal antibodies specific for this glucan and for the Mycoplasma mycoides subsp. mycoides-secreted galactan were used to detect the two polysaccharides. While M. mycoides subsp. capri strains of serovar LC produced only capsular galactan, no polysaccharide could be detected in strains of serovar Capri. All strains of M. capricolum subsp. capripneumoniae and M. leachii produced glucan CPS and EPS, whereas glucan production and localization varied among M. capricolum subsp. capricolum strains. Genes associated with polysaccharide synthesis and forming a biosynthetic pathway were predicted in all cluster members. These genes were organized in clusters within two loci representing genetic variability hot spots. Phylogenetic analysis showed that some of these genes, notably galE and glf, were acquired via horizontal gene transfer. These findings call for a reassessment of the specificity of the serological tests based on mycoplasma polysaccharides.


Subject(s)
Genetic Loci , Mycoplasma mycoides/genetics , Mycoplasma mycoides/metabolism , Polysaccharides, Bacterial/biosynthesis , Animals , Cattle , Cluster Analysis , Gene Transfer, Horizontal , Genes, Bacterial , Genome, Bacterial , Magnetic Resonance Spectroscopy , Mycoplasma mycoides/isolation & purification , Phylogeny , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/isolation & purification , Sequence Homology
16.
Article in English | MEDLINE | ID: mdl-25237783

ABSTRACT

Plant metabolite profiling is commonly carried out by GC-MS of methoximated trimethylsilyl (TMS) derivatives. This technique is robust and enables a library search for spectra produced by electron ionization. However, recent articles have described problems associated with the low stability of some TMS derivatives. This limits the use of GC-MS for metabolomic studies that need large sets of qualitative and quantitative analyses. The aim of this work is to determine the experimental conditions in which the stability of TMS derivatives could be improved. This would facilitate the analysis of the large-scale experimental designs needed in the metabolomics approach. For good repeatability, the sampling conditions and the storage temperature of samples during analysis were investigated. Multiple injections of one sample from one vial led to high variations while injection of one sample from different vials improved the analysis. However, before injection, some amino acid TMS derivatives were degraded during the storage of vials in the autosampler. Only 10% of the initial quantity of glutamine 3 TMS and glutamate 3 TMS and 66% of α-alanine 2 TMS was detected 48 h after derivatization. When stored at 4 °C until injection, all TMS derivatives remained stable for 12 h; at -20 °C, they remained stable for 72 h. From the integration of all these results, a detailed analytical procedure is thus proposed. It enables a robust quantification of polar metabolites, useful for further plant metabolomics studies using GC-MS.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Metabolome/physiology , Metabolomics/methods , Trimethylsilyl Compounds/analysis , Amino Acids/analysis , Amino Acids/chemistry , Arabidopsis/metabolism , Carbohydrates/analysis , Carbohydrates/chemistry , Seeds/chemistry , Temperature , Trimethylsilyl Compounds/chemistry
17.
J Plant Physiol ; 171(1): 55-64, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-23998915

ABSTRACT

Flax (Linum usitatissimum) is grown for its oil and its fiber. This crop, cultivated in temperate regions, has seen a renewed interest due to the presence of abundant molecules of interest for many applications. Little information is available about the behavior of flax during osmotic stress; yet this is considered a major stress that causes significant yield losses in most crops. To control the presence of this stress better, flax behavior was investigated following the application of osmotic stress and the response was examined by applying increasing concentrations of PEG 8000. This resulted in the reorganization of 32 metabolites and 6 mineral ions in the leaves. The analysis of these two types of solute highlighted the contrasting behavior between a higher metabolite content (particularly fructose, glucose and proline) and a decrease in mineral ions (especially nitrate and potassium) following PEG treatment. However, this reorganization did not lead to a greater accumulation of solutes, with the total amount remaining unchanged in leaves during osmotic stress.


Subject(s)
Flax/physiology , Plant Extracts/chemistry , Flax/chemistry , Gas Chromatography-Mass Spectrometry , Metabolomics , Osmotic Pressure , Phylogeny , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Plant Leaves/physiology , Sequence Analysis, DNA
18.
PLoS One ; 8(7): e68373, 2013.
Article in English | MEDLINE | ID: mdl-23869216

ABSTRACT

Contagious bovine pleuropneumonia is a severe respiratory disease of cattle that is caused by a bacterium of the Mycoplasma genus, namely Mycoplasma mycoides subsp. mycoides (Mmm). In the absence of classical virulence determinants, the pathogenicity of Mmm is thought to rely on intrinsic metabolic functions and specific components of the outer cell surface. One of these latter, the capsular polysaccharide galactan has been notably demonstrated to play a role in Mmm persistence and dissemination. The free exopolysaccharides (EPS), also produced by Mmm and shown to circulate in the blood stream of infected cattle, have received little attention so far. Indeed, their characterization has been hindered by the presence of polysaccharide contaminants in the complex mycoplasma culture medium. In this study, we developed a method to produce large quantities of EPS by transfer of mycoplasma cells from their complex broth to a chemically defined medium and subsequent purification. NMR analyses revealed that the purified, free EPS had an identical ß(1->6)-galactofuranosyl structure to that of capsular galactan. We then analyzed intraclonal Mmm variants that produce opaque/translucent colonies on agar. First, we demonstrated that colony opacity was related to the production of a capsule, as observed by electron microscopy. We then compared the EPS extracts and showed that the non-capsulated, translucent colony variants produced higher amounts of free EPS than the capsulated, opaque colony variants. This phenotypic variation was associated with an antigenic variation of a specific glucose phosphotransferase permease. Finally, we conducted in silico analyses of candidate polysaccharide biosynthetic pathways in order to decipher the potential link between glucose phosphotransferase permease activity and attachment/release of galactan. The co-existence of variants producing alternative forms of galactan (capsular versus free extracellular galactan) and associated with an antigenic switch constitutes a finely tuned mechanism that may be involved in virulence.


Subject(s)
Mycoplasma mycoides/metabolism , Polysaccharides, Bacterial/metabolism , Antigenic Variation , Biosynthetic Pathways , Computational Biology , Galactans , Mycoplasma mycoides/ultrastructure , Nuclear Magnetic Resonance, Biomolecular , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/isolation & purification
19.
Carbohydr Polym ; 93(1): 154-62, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23465914

ABSTRACT

The bacterium Enterobacter ludwigii Ez-185-17, member of the family Enterobacteriaceae, was isolated from the root nodules of plants harvested in the nuclear power region of Chernobyl. Under batch culture conditions, the bacteria produce a high-molecular-mass exopolysaccharide (EPS). After purification, the structure of this EPS was determined using a combinatory approach including monosaccharide composition (GC-FID, HPAEC-PAD) and branching structure determination (GC-MS), as well as 1D/2D NMR ((1)H, (13)C) and ESI-MS (HR, MS/MS) studies of oligosaccharides obtained from mild acid hydrolysis. The EPS was found to be a charged hexasaccharide with a repeating unit composed of d-galactose, d-glucose, l-fucose, d-glucuronic acid (2:1:2:1) and substituted with acyl and pyruvyl groups. The metal-binding properties of the exopolysaccharide were then investigated, and the results seem to indicate that the EPS decreased Cd sequestration in flax seeds.


Subject(s)
Biodegradation, Environmental , Chernobyl Nuclear Accident , Enterobacter/chemistry , Enterobacter/isolation & purification , Polysaccharides, Bacterial/chemistry , Cadmium/chemistry , Enterobacter/physiology , Flax/chemistry , Fucose/chemistry , Galactose/chemistry , Gas Chromatography-Mass Spectrometry , Glucose/chemistry , Glucuronic Acid/chemistry , Hydrolysis , Magnetic Resonance Spectroscopy/methods , Molecular Weight , Seeds/chemistry , Species Specificity , Spectrometry, Mass, Electrospray Ionization
20.
Biopolymers ; 64(1): 34-43, 2002 Jun.
Article in English | MEDLINE | ID: mdl-11948440

ABSTRACT

Partially acetylated, high molecular weight glucuronans were produced by a Sinorhizobium meliloti mutant strain. Two native glucuronan samples with various degrees of acetylation were sonicated to obtain lower molecular weight samples and with low viscosity suitable for chemical modification and (13)C NMR experiments. The average degree of substitution (DS) of the polymer was estimated by Fourier transform infrared (FTIR) and NMR. (13)C NMR spectra were obtained and used to suggest a complete assignment of the signals. The nuclear Overhauser effect spectroscopy (NOESY) and heteronuclear multi-bond coherence (HMBC) experiments were used to elucidate connectivities between the various residues and deduce the linkage of these residues within the polysaccharide.


Subject(s)
Polysaccharides, Bacterial/chemistry , Acetylation , Biopolymers/biosynthesis , Biopolymers/chemistry , Carbon Isotopes , Hydrogen/chemistry , Magnetic Resonance Spectroscopy , Molecular Weight , Polysaccharides, Bacterial/biosynthesis , Sinorhizobium meliloti/metabolism , Sonication , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...