Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37688028

ABSTRACT

A suitable control architecture for connected vehicle platoons may be seen as a promising solution for today's traffic problems, by improving road safety and traffic flow, reducing emissions and fuel consumption, and increasing driver comfort. This paper provides a comprehensive overview concerning the defining levels of a general control architecture for connected vehicle platoons, intending to illustrate the options available in terms of sensor technologies, in-vehicle networks, vehicular communication, and control solutions. Moreover, starting from the proposed control architecture, a solution that implements a Cooperative Adaptive Cruise Control (CACC) functionality for a vehicle platoon is designed. Also, two control algorithms based on the distributed model-based predictive control (DMPC) strategy and the feedback gain matrix method for the control level of the CACC functionality are proposed. The designed architecture was tested in a simulation scenario, and the obtained results show the control performances achieved using the proposed solutions suitable for the longitudinal dynamics of vehicle platoons.

2.
Sensors (Basel) ; 21(12)2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34207511

ABSTRACT

The evolution of communication networks offers new possibilities for development in the automotive industry. Smart vehicles will benefit from the possibility of connecting with the infrastructure and from an extensive exchange of data between them. Furthermore, new control strategies can be developed that benefit the advantages of these communication networks. In this endeavour, the main purposes considered by the automotive industry and researchers from academia are defined by: (i) ensuring people's safety; (ii) reducing the overall costs, and (iii) improving the traffic by maximising the fluidity. In this paper, a cyber-physical framework (CPF) to control the access of vehicles in roundabout intersections composed of two levels is proposed. Both levels correspond to the cyber part of the CPF, while the physical part is composed of the vehicles crossing the roundabout. The first level, i.e., the edge-computing layer, is based on an analytical solution that uses multivariable optimisation to minimise the waiting times of the vehicles entering a roundabout intersection and to ensure a safe crossing. The second level, i.e., the cloud-computing layer, stores information about the waiting times and trajectories of all the vehicles that cross the roundabout and uses them for long-term analysis and prediction. The simulated results show the efficacy of the proposed method, which can be easily implemented on an embedded device for real-time operation.


Subject(s)
Accidents, Traffic , Waiting Lists , Humans , Safety
SELECTION OF CITATIONS
SEARCH DETAIL
...